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SummarySummarySummarySummary    

This paper proposes a motion error compensation methodology for a Hexapod-type parallel mechanism 
machine tool. First, the contouring error attributable to the elastic deformation of struts caused by the gravity 
is predicted for an arbitrary position and orientation of spindle head. By compensating the predicted error on 
a reference trajectory, the machine's motion accuracy can be improved. It is experimentally verified that 
predicted and measured motion trajectories coincide well, even when the spindle is tilted by more than 23 
degrees, where the gravity significantly deteriorates the machine's motion accuracy. By applying the pro-
posed compensation method, the motion accuracy is significantly improved particularly near an edge of the 
machine’s workspace.  
Keywords: Hexapod machine tool, Accuracy calibration, Motion accuracy, Double Ball Bar, Gravity error  

1. Introduction 
Although six-axis machine tools of the “Hexapod” type mechanism are now commercially available, they 

are not widely accepted in today’s industry. A critical, and inherent problem of a Hexapod-type machine tool 
is its low stiffness. Another issue is on their motion accuracies, particularly on the calibration of kinematic 
parameters and the compensation of motion errors. 

In our previous work(1), we presented a calibration methodology that performs DBB(2) measurements under 
the condition where a tilting angle of the spindle is small, and thus the elastic deformation of struts due to the 
platform weight is minimized. By applying the proposed method, the circularity error was reduced to as small 
as 8 µm, when the spindle is near the center of the workspace. However, when the spindle is near an edge 
of the workspace and is tilted, or its tilting angle is very large even though the spindle is near the center of 
the workspace, the elastic deformation of struts caused by the gravity imposes a significant effect on the 
machine’s contouring performance. As a result, the circularity error becomes as much as 40∼140 µm in 
such a case.  

Conventional serial mechanism machine tools also worsen their motion accuracy near an edge of the 
workspace or when the tilting angle is larger. In the case of a parallel mechanism machine, it is mainly due 
to the elastic deformation of mechanical parts. If the effect of the gravity can be predicted and compen-
sated, the motion accuracy can be significantly improved all over the workspace. Weck et al.(3) presented a 
compensation method for the axial deformation of struts on the Stewart platform. Soons et al. (4) discussed 
the positioning error at the tool tip due to the elastic deformation on a parallel mechanism machine. 

It should be emphasized that the motion error due to the miscalibration of kinematic parameters must be 
minimized in order for an effective gravity compensation. When the kinematic parameters are calibrated in 
a sufficient accuracy, the motion error due to the gravity can be predicted by using a simulation model of 
the elastic deformation of the parallel mechanism. By using this simulation result, the reference trajectory 
is compensated to improve the machine’s overall motion accuracy.  
 
2. Configuration of a Hexapod-type Machine Tool 

This paper considers a Hexapod-type parallel mechanism machine tool of the Stewart platform(5) depicted 
in Figure 1. It has six telescoping struts, each of which is connected to the base by a 2-DOF (degrees of free-
dom) joint. The other end of each strut is connected by a 3-DOF joint to the platform, where a machine spin-
dle is installed.  

Figure 1 shows a schematic view of COSMO CENTER PM-600, a Hexapod-type machine tool(6) used in 
our study. Table 1 shows its major specifications 



 
                                                  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
3.  Prediction of Gravity-induced Errors 
3.1  Equilibrium of Force and Moment 

This section presents a simulation model to predict the elastic deformation of mechanical parts due to the 
gravity. Since the effect of the bending of a strut on the machine’s contouring error is much smaller than that 
of its axial deformation, the simulation model only considers the axial deformation of a strut. As illustrated in 
Figure 2, the model considers the gravity acting on a strut (of the mass msi) and a servo motor (of the mass 
mm). For the given position and orientation of the spindle, the objective is to estimate the force acting on each 
strut in the axial direction. Then, the positioning error at the tool tip is estimated as the superposition of the 
elastic axial deformation of each strut, which is proportional to the axial force imposed on it. 

The axial force acting on the i-th strut, denoted by iF  (i = 1∼6), is computed based on the equilibrium of 
force and moment. Since the only external force acting on this mechanism is the gravity, the equilibrium of 
force simply gives: 
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where mmech is the equivalent weight of the entire system (including the platform, spindle unit, 6 struts, and so 
on), and g denotes the gravity acceleration. The direction of iF

�

 is the same as the direction of the i-th strut, 
and thus is a function of the position and orientation of the spindle.  

On each strut, the gravity forces, msig and mmg, make the moment around the center of base joint (see Fig-
ure 2). This moment can be represented by the force, piF

�

, acting on the center of platform joint in the direc-
tion perpendicular to the i-th strut. It is given as follows: 

Fig. 1  COSMO CENTER PM-600   

Table 1  Specifications of PM-600 
Travels(X,Y,Z) [mm]     φ600(XY) × 400(Z) 

420 × 420 × 400 
Tilting angle [°]              ± 25 
Rapid traverse [m/min]         100 
Max. acceleration [m/s2]        14.7   
Spindle speed [min-1]      12,000 / 30,000 
Spindle motor [kW]             6 
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Servo motor 

Base joint  
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ΔGZ 

Actual center of grav-
ity of spindle unit 
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Fig. 2 Equilibrium of force and moment on a strut 
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where γi is the angle between the i-th strut and the Z axis, Lm is the length of the servo motor, Lsi is the length 
of the i-th strut (between the platform joint and the base joint). This equivalent force makes the torque around 
the center of gravity of the spindle unit as follows: 
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where piD
�

 is the position vector of the i-th platform joint with respect to the center of gravity of the plat-
form (including the platform plate and the spindle unit), and “×” denotes the outer product of two vectors.  
In addition to the weight of struts and servo motors, the weight of spindle unit itself also introduces the mo-
ment. For the simplification, the platform plate and the spindle unit are modeled as eight particles of the mass 
mj (j = 1∼8), as shown in Figure 3. When the platform plate is tilted, these weights give the following mo-
ment: 
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where jG  (j = 1∼8) is the position vector of the j-th particle with respect to the center of gravity of the 
spindle unit. jG

�

 is also a function of the tilting angle of the spindle. Note that the center of gravity is 
shifted by ∆Gz to the Z-direction from the geometrical center of the spindle unit, as shown in Figure 2. ∆Gz 
can be identified based on actual measurement of servo motor load. The details will be given in Section 3.2. 
The total moment given by the weight of the spindle unit, struts, and servo motors is: 

ps MMM +=  (5) 

From the equilibrium of moment, each axial force on the i-th strut, iF  (i = 1∼6), must satisfy the following 
equation: 
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By solving Eqs. (1) and (6), the axial force imposed on each strut, iF  (i = 1∼6), can be computed for the 
given position and orientation of spindle.  
 The elastic deformation of the i-th strut in the axial direction is assumed to be proportional to iF . It 
can be written as follows: 

( ) iBistiffi FCLKL ⋅+=∆ α  (7) 

where CB is the compliance of the ball screw in the axial direction, Li is the length of the i-th strut (a function 
of the position and orientation of the spindle), and α = S⋅E with the cross sectional area of the strut, S, and the 
Young’s modulus, E. KStiff is a constant to compensate the stiffness of the strut, and is identified based on ac-
tual measurement of the machine’s contouring error. Its identification will be also discussed in Section 3.2. 
 The positioning error at the tool tip is given as the superposition of the deformation of each strut. That is,  
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where p�  represents the commanded position and orientation of the tool, and p∆  is the positioning and 
orientation error vector.  f denotes the forward kinematic function of the Stewart platform parallel mecha-
nism.  
 

Fig. 3  Simplified model of platform and spindle unit 

Platform plate 

Spindle unit 



3.2  Identification of Simulation Parameters 
The model presented in the previous subsection includes the parameters that must be experimentally iden-

tified. When such parameters are properly identified, the model can predict gravity-induced motion errors in 
a sufficient accuracy despite of its simplicity. In particular, we identified two parameters, namely ∆Gz and 
Kstiff, based on actual measurement of servo motor currents and contouring error profiles in circular tests.  

By monitoring the amateur current of six servo motors in a circular test, the load imposed on each strut 
can be estimated along the circular path. An equivalent total torque, M

�

 (see Eq. (6)), can be computed 
based on the measured load profiles. ∆Gz can be identified such that the error between simulated and meas-
ured load profiles is minimized. 

The parameter Kstiff is identified based on contouring error profiles in a circular test. Throughout this paper, 
the circularity error is used as an index to evaluate the machine’s motion accuracy. Based on multiple circular 
tests with a different center location and spindle orientation, Kstiff is identified such that the error between 
measured and simulated contouring error profiles is minimized. In our test, we performed two circular tests in 
the conditions shown in Table 2 for the identification of ∆Gz and Kstiff. 
  
3.3  Simulation of Gravity-induced Errors 

Based on the prediction of axial deformation of each strut, the positioning error at the tool tip can be 
simulated by using the forward kinematic function. Figure 4 (a) compares simulated and measured contour-
ing error profiles in the condition A in Table 2. Note that for the identification of the two parameters was 
based on this profile. Figure 4 (b) compares simulated and measured contouring error profiles in the condi-
tion that is not used in the identification. The figures show a good agreement between simulated and meas-
ured profiles even in the latter case. As summarized in Table 3, the error between simulated and measured 
circularity errors is approximately 20% at maximum.  

Table 2  Circular test conditions for the identification of simulation parameters  
Center location of circle, mm Tilting angles of spindle, deg Condition 
X Y Z 

Radius, 
mm a b c 

A 0 100 -1008 144 -23 0 0 
B 100 0 -1008 144 0 23 0 

Circularity error: 
Simulated: 70.3µm
Actual: 76.3µm

Circularity error: 
Simulated: 63.2µm
Actual: 76.6µm

Center of circle: (0,100,-1008) mm， 
Radius: 144mm， 
Tilting angle: (-23°, 0°, 0°)  

Center of circle: (-70,-70,-1008) mm， 
Radius: 144 mm 
Tilting angle: (17°, -17°, 0°)  

(a) A circular test on which the identifica-
tion is based. 

Fig. 4  Simulated and measured contouring error profiles 

(b) A circular test on which the identifica-
tion is not based. 

Table 3  Comparison of circularity error in measured and simulated circular test profiles 
Circularity error, µm Condition Center of circle, mm 

X, Y, Z 
Radius, mm Tilt angles, deg

a,b,c Measured Simulated 
Error, % 
 

A 0,100,-1008 144 -23,0,0 76.4 70.3 -8 
B 100,0,-1008 144 0,23,0 35.6 27.1 -24 
C -70,-70,-1008 144 17,-17,0 63.2 76.6  21 
D 0,100,-1008 144 -25,0,0 141.4 124.9 -12 



 
4. Compensation of Gravity-induced Errors 
4.1 Compensation Scheme 

The error induced by the gravity can be compensated by using the simulator presented above. At every 
0.1° from the starting point on a circular path, the positioning error (∆Xi, ∆Yi, ∆Zi) (i = 1∼3600) is simulated. 
Then, the reference circular trajectory is shifted by (-∆Xi, -∆Yi, -∆Zi) at every point. 
 
4.2  Compensation Results 

Table 4 compares circularity errors with and without the compensation in total eight conditions. “Im-
provement” in the table shows the percentage of the reduction in the circularity error by applying the 
compensation.  

In all conditions shown in Table 4, the circularity error was significantly reduced. Recall that the simula-
tion parameters ∆Gz and KStiff were identified based on the contouring error profiles measured in the condi-
tions A and B, and thus it is reasonable to expect better compensation in these conditions. In other conditions 
where the gravity significantly deteriorates the circularity error (e.g. C, D, and E), however, a significant im-
provement in the circularity error by the compensation was also observed. Figure 5 shows contouring error 
profiles in the condition A with and without the compensation.  
 
4.3  Discussion 

Figure 6 summarizes circularity errors in the conditions A, D∼I, where the tiling angle of the spindle var-
ies from –25° to +23° with the same center location, (0,100,-1008) mm. “(expected)” shows the circularity 
error computed simply by taking the difference between simulated and measured contouring error profiles. 

At this stage, it is not clear why the actual circularity error with the compensation is not as small as the 
expected value. It may be attributable to the calibration error of kinematic parameters. In order to simulate 
the contouring error due to the gravity in a sufficient accuracy, the calibration error of kinematic parameters 
must be minimized. Although the set of kinematic parameters that showed the best contouring performance 
so far was used in the tests above, it may still contain calibration errors to some extent. If the calibration 
error is further reduced, then further improvement by the gravity compensation is expected. 

Table 4  Circularity errors with and without the gravity compensation 
Circularity error, µm Condition Center of circle, mm 

X, Y, Z 
Radius, mm Tilt angles, deg

a, b, c Without 
compensation

With 
compensation 

Improve-
ment, %

A 0,100,-1008 144 -23,0,0 76.3 28.4 63 
B 100,0,-1008 144 0,23,0 35.6 22.7 36 
C -70,-70,-1008 144 17,-17,0 63.2 15.9 75 
D 0,100,-1008 144 -25,0,0 141.4 56.6 60 
E 0,100,-1008 144 -20,0,0 37.9 10.7 72 
F 0,100,-1008 144 -10,0,0 8.7 4.1 53 
G 0,100,-1008 144 0,0,0 6.5 4.4 32 
H 0,100,-1008 144 10,0,0 4.2 5.2 -24 
I 0,100,-1008 144 23,0,0 6.8 6.5 4 

Center of circle: (0,100,-1008) mm,
Radius: 144 mm,  
Tilting angles: (-23°,0°,0°) 

Fig. 5  Compensation of gravity-induced contouring error

(a) Without compensation (b) With compensation 

Circularity 
error: 76.3 µm

Circularity 
error: 28.4 µm



 
5.  Conclusion 

This paper presented a compensation scheme for gravity-induced contouring errors based on a motion 
simulator of a Hexapod-type parallel mechanism machine tool. The following conclusions are drawn: 
(1) A simulator to predict gravity-induced errors is proposed based on the axial elastic deformation of struts. 

The simulation parameters are identified based on measured contouring error profiles and servo motor 
current profiles in circular tests. Simulated contouring error profiles showed a good agreement with 
measured ones. The error between simulated and measured circularity errors was approximately 20% at 
maximum.  

(2) By compensating a reference trajectory based on the proposed simulator, the circularity error was re-
duced by about 70% at maximum when the tilting angle of the spindle around the X-axis is more than 
20 degrees, where the gravity imposes a significant effect on the machine’s contouring performance. 

(3) In many cases, the reduction of circularity error by applying the gravity compensation was not as much 
as its expected value, i.e. the error between measured and simulated contouring error profiles. It may be 
attributable to the calibration error of kinematic parameters. For further effective compensation of grav-
ity-induced contouring errors, the calibration error of kinematic parameters must be further reduced. 
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Fig. 6  Circularity error versus tilting angle 


