
Proceedings of 2004 JUSFA
2004 Japan - USA Symposium on Flexible Automation

Denver, Colorado, July 19-21, 2004

JL025

DISTURBANCE ESTIMATION ON A HEXAPOD-TYPE PARALLEL KINEMATIC
MACHINE TOOL BY USING A DISTURBANCE OBSERVER

Toshihiro OKUDA, Soichi IBARAKI, Yoshiaki KAKINO
Department of Precision Engineering, Kyoto University
Yoshida-honmachi Sakyo-ku Kyoto, Japan 606-8501

Email: ibaraki@prec.kyoto-u.ac.jp

Masao NAKAGAWA, Tetsuya MATSUSHITA
Okuma Corp.

Oguchi-cho, Niwa-gun, Aichi, 80-0144 Japan

ABSTRACT
This paper presents a disturbance estimation methodol-

ogy on a Hexapod-type parallel kinematic machine tool of the
Stewart platform. The disturbance estimation by monitoring
an armature current of servo motors has been commonly done
on conventional serial mechanism feed drives. On a paral-
lel mechanism feed drive, a disturbance observer must have
a more complex structure with a precise model of the gravity
effect on servo motor loads, which significantly varies depend-
ing on the position and the orientation of a spindle unit. The
estimation performance of the proposed disturbance observer
is validated through static load tests and cutting experiments.
As an application example, the proposed disturbance estima-
tion scheme is applied to the compensation of the tool deflec-
tion in end milling processes by tilting the spindle.
Key Words: parallel kinematic machine tools, Stewart plat-
form, disturbance observer, servo motors, stiffness

1 Introduction
A commercial machine tool driven by a ”Hexapod”-type

parallel kinematic feed drive was first introduced to the pub-
lic in 1994. Although more than ten years have been passed
since then, they are not widely accepted in today’s industry.
One of critical issues with parallel kinematic machine tools is
its lower stiffness against an external force, compared to con-
ventional feed drives with a guideway that introduces higher
friction. As parallel kinematic machine tools has begun to be
accepted in the market lately, the improvement in their control
performance in such an aspect is urgently needed.

In a parallel kinematic machine tool, a spindle unit is sup-
ported and driven only by struts without a guideway, which in-
herently makes it difficult to have higher stiffness, compared to
conventional machine tools with a guideway. Although various

design modification is possible to enhance the overall stiffness
of a parallel kinematic drive, the stiffness issue still remains
as a critical problem in most commercial parallel kinematic
machine tools. For example, the installment of a ball screw
of larger diameter naturally enhances the overall stiffness, al-
though it costs more. Unlike the ”Hexapod”-type parallel kine-
matic drive, a parallel kinematic drive with movable base joints
can have a guideway for each feed drive, and thus it typically
exhibits higher overall stiffness. There are a considerable num-
ber of commercial machines adopting this structure [1]. Due to
its more complicated structure, however, it is often more diffi-
cult to calibrate kinematic parameters on such a machine, and
thus to achieve higher positioning accuracy. A comprehensive
review on structures, issues, and applications of parallel kine-
matic machine tools can be found in [1].

This paper presents a disturbance estimation methodology
using a disturbance observer on a Hexapod-type parallel kine-
matic machine tool of the Stewart platform. Most of research
efforts found in the literature on the motion control of a par-
allel kinematic machine tool focuses on its static positioning
performance. The identification of kinematic parameters is the
most important issue in such an aspect[2]. On the other hand,
there have been fewer works on the feedback control explic-
itly taking account of the dynamics of a parallel mechanism.
If an external force acting on a spindle unit can be estimated
accurately, we may be able to implement a control scheme to
dynamically compensate it. Furthermore, on a parallel kine-
matic drive, it is well known that the gravity imposes a critical
effect on its positioning accuracy[3]. The disturbance estima-
tion plays an important role in the compensation of such an
error. The autonomous monitoring and adaptive control of ma-
chining processes have been an active research issue in years
from the viewpoint of the development of autonomous manu-



facturing systems[4]. The monitoring of cutting forces is one
of key technologies in such a system for any types of machine
tools. A disturbance observer will be of practical importance
in these applications.

The remainder of this paper is organized as follows. The
following section briefly reviews the configuration and the
kinematics of a Hexapod-type parallel kinematic machine tool
with the Stewart platform. The configuration of a disturbance
observer for this parallel kinematic feed drive is presented in
Section 3. Section 4 presents the experimental validation of
the proposed estimation method. Section 5 presents the ap-
plication of the proposed scheme to the compensation of tool
deflection in two dimensional endmilling. Section 6 gives the
conclusion of this paper.

2 Configuration and Kinematics of a Hexapod-type
Parallel Kinematic Machine Tool

2.1 Configuration of a Hexapod-type Parallel Kine-
matic Machine Tool

This paper considers a Hexapod-type parallel kinematic
machine tool of the Stewart platform[5] depicted in Figure 1.
It has six telescoping struts, each of which is connected to a
base plate by a 2-DOF joint. The other end of a strut is con-
nected by a 3-DOF joint to a platform plate, where a spindle is
installed.

Figure 2 shows a schematic view of COSMO CENTER
PM-600 by Okuma Corp., a commercial Hexapod-type parallel
kinematic machining center with the Stewart platform, which
is used as an experimental machine throughout our study. Ta-
ble 1 shows its major specifications. Each strut is driven by
a built-in servo motor via a ball screw. The “length” of each
strut is indirectly measured by a rotary encoder installed in a
servo motor. In this paper, six joints on the platform plate are
referred to as platform joints, while those on the base plate are
referred to as base joints.

2.2 Inverse and Forward Kinematics of the Stewart
Platform

In Figure 1. T = [X, Y, Z, A,B, C] represents the po-
sition and the orientation of the spindle tip (tool tip). When
T is given, a problem to calculate the length of each strut,
L = [L1, · · · , L6], is called the inverse kinematic problem.
Write it as:

L = F(T ) (1)

whereF represents the inverse kinematic function of the Stew-
art platform. Note thatF is a function of the location of plat-
form joints,P j ∈ R3 (j = 1 ∼ 6), and the location of base
joints,Qj ∈ R3 (j = 1 ∼ 6). The inverse kinematic problem
for the Stewart platform can be algebraically solved[2]. On the
other hand, a problem to calculateT for the givenL is referred
to as the forward kinematic problem:

T = F−1(L) (2)
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Figure 1. Stewart platform

Figure 2. A Hexapod-type parallel kinematic machine tool, COSMO
CENTER PM600.

Table 1. Major specifications of PM-600

Workspace, mm φ600 (XY) ×400 (Z)

(420× 420× 400)

Tilting angle, deg ±25

Max. rapid traverse speed, m/min 100

Max. acceleration, m/s2 14.7

Spindle speed, min−1 12,000/30,000

Spindle power, kW 6

The forward kinematic problem of the Stewart platform cannot
be algebraically solved. In our simulator, the Newton-Raphson
method is employed to numerically solve it.

3 Disturbance Estimation using a Disturbance Ob-
server

3.1 An Estimation Method in Parallel Mechanism
The disturbance estimation by monitoring armature cur-

rent of servo motors has been commonly done on conventional
serial mechanism feed drives[7]. As an example, we consider
a single-axis feed drive which has a slideway driven by a servo
motor via a ball screw. If the bandwidth of torque control loop
for a servo motor can be assumed sufficiently wide, then we
can simply assume that the motor torque is proportional to its
armature current. That is, for the armature current (in A), the
cutting forced̂ (in N) can be estimated as follows:

d̂ =
1
R

Kt i− F̂ − f̂ (3)



wheref̂ represents the estimated value of a friction force (N)
acting on e.g. a slideway.̂F represents the estimated value of
the inertial force (in N).Kt represents the motor’s torque con-
stant (Nm/A).R(= P

2π , P : all screw pitch(mm)) represents the
coefficient to translate the rotary motion into the linear motion.
In orthogonal-axis serial mechanism feed drives, the cutting
force in the direction of each axis can be estimated by moni-
toring the armature current in each servo motor.

In parallel kinematic feed drives, unlike serial kinematic
feed drives, 1) the cutting force acting on the spindle tip (or
tool tip) must be estimated as the superposition of the force
acting on each servo motor. 2) The gravity imposes a critical
effect on Eq.(3), and its effect significantly varies depending
on the position and the orientation of the spindle[6]. There-
fore, it is necessary to estimate this effect precisely. 3) There
is a variety of factors such as the friction on a ball screw and
a joint that impose coupled effects over multiple axes. If these
differences are regarded, the basic idea about the estimation of
cutting forces shown above can be also applied to parallel kine-
matic feed drives. That is, using an armature current (in A) in
the servo motor of thej-th strut,ij (j = 1 ∼ 6), the distur-
bance force in the direction of thej-th strut can be estimated
as follows:

d̂j =
1
R

Kt ij − F̂j − f̂j − ĝj (4)

whereĝj , F̂j , f̂j represent the gravity (in N), the inertial force
(in N), and the friction force (in N) acting on the direction of
j-th strut, respectively. The estimated cutting force acting on
the spindle,̂d, is given as the superposition of the forces above.
That is,

d̂ =
6∑

j=1

d̂j lj (5)

wherelj ∈ R3 represents the unit vector in the direction of the
j-th strut.

3.2 Configuration of a Disturbance Observer
As shown in Eq.(4) and (5), to estimate the cutting force

d̂ on the parallel mechanism, it is necessary to estimate the
gravity, ĝj , the friction force,f̂j , and the inertial force,̂Fj on
all the struts for the given position and orientation of the tool
tip.

3.2.1 A Gravity Model on Each Strut At first, for
the convenience of notation, define the following function,
Γl,B(x) : R6 → R6 by:

Γl,B(x) =

[∑6
j=1 (xjlj)∑6
j=1 (Bj × xjlj)

]
(6)

wherelj ∈ R3 (j = 1 ∼ 6) represents the unit vector in the
direction of thej-th strut. Bj ∈ R3 (j = 1 ∼ 6) represents
the location of the center of thej-th platform joint with respect
to the center of gravity of the platform plate. Note thatlj and
Bj are dependent on the tool position and orientation,T . The

symbol× denotes the outer product of two vectors. Notice
that whenxj represents an axial force on thej-th strut, the first
three components of the vectorΓl,B(x) define the combined
force vector of the axial forces. The last three components de-
fine the combined moment around the center of gravity of the
platform plate imposed by the axial forces acting on platform
joints.

The gravity imposed on thej-th platform joint in the direc-
tion of thej-th strut,ĝ = {ĝj}j=1∼6, is given by solving the
following equilibrium equation of force and moment around
the center of gravity of the platform plate:

Γl,B (ĝ − gs) =
[−Ng

−Mg

]
(7)

whereNg ∈ R3 and Mg ∈ R3 respectively represent an
equivalent force and moment around the center of gravity of
the platform plate given by the gravity acting on each strut.
They are given as follows.

Figure 3 illustrates a gravity model on each strut. In the
figure, mP , mB , mJ , mS represent the mass (in kg) of the
platform plate, the ball screw, the platform joint, and the servo
motor, respectively.l1 is the distance (in meter) between the ro-
tation center of a base joint and the center of gravity of a servo
motor,l2 is the length of the platform joint unit on a strut, and
l3 is the length of the ball screw (distance between the rotation
center of a base joint and a platform joint), and theLj is the
total length of thej-th strut. By using this model,Ng andMg

are given as follows:

Ng = mP g +
6∑

j=1

Ng,j , Mg =
6∑

j=1

Mg,j (8)

whereg ∈ R3 is a vector that represents the direction and the
magnitude of the gravity. On each strut, the superposition of
the gravity acting on a ball screw, a platform joint, and a servo
motor can be represented as an equivalent moment around the
rotation center of a base joint (see Figure 3). On thej-th strut,
this moment imposes an equivalent force,Ng,j in Eq. (8), at
the center of thej-th platform joint in the direction perpendicu-
lar to the strut. Similarly,Mg,j ∈ R3 represents an equivalent
moment around the center of gravity of the platform plate im-
posed byNg,j on thej-th strut. That is,

Ng,j =
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Figure 4. The friction on a base joint.

In Eq. (7), thej-th component of the vectorgs ∈ R6 represents
the axial component of the gravity acting on thej-th strut. It is
given by:

{gs}j = mT g · lj (10)
wheremT represents the total mass of one strut.

3.2.2 A Friction Model on Each Strut On each
strut, we consider: 1) a linear friction on a ball screw, and 2) an
angular friction in a base joint. The total friction force in the
direction ofj-th strut, f̂ = {f̂j}1∼6, is given by solving the
following equation:

Γl,B(f̂ − fb) =
[−Nc

−Mc

]
(11)

wherefb ∈ R6 represents a linear friction (in N) between a ball
screw and a nut, and is given by the following simple model:

{fb}j = −f0j sign
(
L̇j

)
(12)

wheref0j is constant.L̇j represents the axial velocity of thej-
th strut.f0j may depend on the velocity or the direction of the
strut. On our experimental machine, however, such an effect
was sufficiently small and thus is neglected for the simplicity
of the model.

In Eq. (11), Nc, Mc ∈ R3 respectively represent an
equivalent force and moment around the center of gravity of the
platform plate given by an angular friction in each base joint.
As illustrated in Figure 4, an angular friction in a base joint
is modeled as an equivalent force acting on the platform joint
in the direction perpendicular to the strut.Nc represents the
superposition of such forces, andMc represents the superpo-
sition of moments around the center of gravity of the platform

plate imposed by such forces. That is,

N c = −
6∑

j=1

t0j

Lj

d (Ljlj) /dt

|d (Ljlj) /dt|

M c = −
6∑

j=1

Bj × t0j

Lj

d (Ljlj) /dt

|d (Ljlj) /dt|

(13)

wheret0j is the friction torque acting on the base joint ofj-th
strut (Nm).

3.2.3 Inertial Force The inertial force in the direc-
tion of j-th strut,F̂ = {F̂j}1∼6, is given by solving the fol-
lowing equation:

Γl,B

(
F̂

)
=

[−NF

0

]
(14)

whereNF ∈ R3 represents a inertial force (in N) imposed on
the spindle tip (tool tip). If the acceleration of the spindle tip is
low, the inertial force becomes sufficiently small compared to
the gravity and the friction, and thus can be neglected.

3.2.4 Estimation of Cutting Forces and Identifi-
cation of the Estimation Model To summarize the dis-
cussion above, when the position and the orientation of the
tool tip, T , are given, the axial force on each strut can be
estimated as follows: 1) for the givenT , compute the ori-
entation of struts,l, and the position of platform joints with
respect to the center of gravity of the platform plate,B, by
solving the inverse kinematic problem. 2) Calculateĝ, f̂ and
F̂ by algebraically solving Eqs. (7) , (11) and (14), respec-
tively. 3) For the measured motor current in thej-th servo
motorij(j = 1 ∼ 6), the disturbance force,̂d, is given by Eqs.
(4) and (5).

Some of the parameters included in the estimation model
must be experimentally identified as follows. The parameters,
mS in Eq. (9), mT in Eq. (10), f0j in Eq. (12), andt0j in
Eq. (13), are to be identified by performing simple identifica-
tion tests, where the armature current in servo motors are mea-
sured in circular operations under a couple of different condi-
tions. Then, the parameters are identified such that an error
between measured and simulated profiles of the motor load on
each strut is minimized see Section 4.1. Other parameters are
set to the design values.

4 Experimental Validations
4.1 Estimation of the Armature Current in Servo Mo-

tors in a Circular Operation
To estimate cutting forces accurately using the proposed

disturbance observer, it must be capable of simulating servo
motor loads in a sufficient accuracy when it is subject to no cut-
ting load. The validity of the proposed dynamic model is ex-
perimentally verified on the Hexapod-type parallel kinematic
machine tool shown in Section 2.1 by comparing measured and
simulated armature current in servo motors.



0 50 100 150 200 250 300 350
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Angle deg

S
er

vo
 m

ot
or

 to
rq

ue
 N

m

T
3
 

T
1 T

2

T
4
 

T
5
 

T
6
 

T
1

T
2

T
3
 

T
4
 

T
5
 

T
6
 

^ 

^ 

^ 

^ 

^ 

^ 

(a) Center location (X,Y,Z)=(0,100,-1008) (mm), tilting angle
(A,B)=(0,0) (deg).
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Figure 5. Comparison of measured (Ti) and simulated (̂Ti) servo
motor torque profiles on each strut (i = 1 ∼ 6) in a circular oper-
ation.

Figure 5(a)(b) show servo motor torque profiles (T1 ∼
T6)(= Kt · ij in Eq.(4)) and their estimates (T̂1 ∼ T̂1)(=
R(F̂j + f̂j + ĝj) in the same equation) in circular operations.
These tests were conducted with the same center location and
radius, but with different spindle’s tilting angles. In both tests,
the feedrate was 1,000 mm/min, the reference trajectory radius
was 144 mm, and the rotation direction was CCW (counter
clockwise). It can be observed that unlike serial kinematic feed
drives, servo motor loads in a parallel kinematic feed drive
drastically vary as the position and orientation of the spindle
change. However, there are good agreements between the mea-
sured and estimated motor load profiles, which validates the
estimation performance of the proposed disturbance observer
in an operation subject to no cutting force.

4.2 Estimation of a Static External Force
As the machine stays stational, a static force is imposed

on a platform plate. The force is measured by using a load
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Figure 6. The estimate of the static external force (its X-, Y-, and
Z-components are respectively compared with the actual force).

gauge, and is compared with its estimate by using the distur-
bance observer based on measured servo motor currents. The
test procedure is as follows: an external force loaded on a plat-
form plate is increased from 0 N to 3.5N by 0.5N, and then is
decreased to 0N by 0.5N. The same test is repeated in the X
and Y directions.

Figure 6(a)(b) shows the comparison of estimated external
forces,d̂x, d̂y, d̂z, (vertical axis) and actual forces (horizon-
tal axis) when the static forces are loaded on X and Y direc-
tions, respectively. Although the estimation error in Z direc-
tion, which must be ideally zero, is relatively large mainly due
to modeling errors in the static friction in the proposed estima-
tion model, this error is of no importance in practice. The esti-
mation error in the direction where the external force is loaded
is about 240 N at maximum and the error becomes smaller as
the force becomes larger.

4.3 Estimation of the Cutting Forces
Cutting experiments are conducted in the condition shown

in Table 2. Estimated forces by the disturbance observer are
compared with the actual forces measured by a 3 component
dynamometer in the straight end milling test to X and Y direc-
tions with various radial depth of cut shown in the table.

As examples, figure 7 shows a comparison of measured



Table 2. Cutting conditions

Workpiece material Aluminum alloy, A5052

Tool A sintered carbide square

endmill (2 flutes,φ12mm)

Spindle speed 12,000 min−1

Feedrate 6,000 mm/min

Milling method Down cut

Axial depth of cut 18.0 mm

Radial depth of cut 1.0, 2.0, 2.5, 3.5, 4.0mm

Tool extension 130 mm (from spindle unit)
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Figure 7. Measured (dx, dy, dz) and estimated (̂dx, d̂y, d̂z) cutting
force profiles in straight end milling tests (radial depth of cut: 4.0mm).

and estimated cutting force components with the radial depth
of cut of 4.0mm.

5 Application Example
5.1 Compensation of Tool Deflection

The tool is deformed by the cutting force in machining,
which results in the inclination of the machined surface. As
a ”Hexapod”-type parallel kinematic machine tool is capable
of 5-axis motion, by regulating the tilting angles of a spindle
unit, we can potentially cancel the inclination of the machined
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Figure 8. Comparison of the mean value of measured (solid lines)
and estimated (dashed lines) cutting forces in X, Y, and Z directions
in straight end milling tests with various radial depth of cut.

surface for higher-accuracy machining. In this chapter, a ba-
sic experiment are conducted for validation of the estimation
and the compensation method of the tool deflection using the
proposed disturbance observer.

5.2 Estimation Method of the Tool Deflection
To obtain the relationship between the normal cutting

force and the deflection of the tool, straight cutting tests toward
the -Y direction were conducted in the condition shown in Ta-
ble 2 and the inclination of the machined surface is measured
by using a electric micrometer. Figure 9 shows measured sur-
face profiles in +Z direction for the radius depth of cut of 0.1,
0.3, 0.5, 1.0, and 2.0 mm. The relationship between the nor-
mal cutting force and an inclination of the machined surface
is summarized in Figure 10. In this figure, the inclination is
defined as the angle between the line that connects the points
at maximum and minimum of the deflection and the vertical
line. In Figure 10, the relationship can be approximated by
a quadratic function, which implies that the overall deflection
can be modeled as a cantilever beam in a sufficient accuracy.
In the following tests, this equation is used for the estimation
of the tool inclination. To summarize, the estimation procedure
of the tool deflection is as follows: The inclination of the ma-
chined surface,̂θ, and the deviation of the machined surface to
the normal direction,̂δ, is given by the following equations.

θ̂ = f(d̂n) (15)

δ̂ = Ra tan θ̂ (16)

whered̂n represents the normal component of the estimated
cutting force,d̂. Ra represents the axial depth of cut. The
function f represents the approximate curve in Figure 10. For
the given command position (and orientation), estimate the er-
ror caused by the cutting force,∆T̂ =

[
δ̂ 0 0 0 θ̂ 0

]
, by using
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Figure 10. The relationship between the normal cutting force (in the
X direction) and the inclination (around the Y axis) of the machined
surface measured in the machining tests.

Eqs.(15)(16) (its direction depends on the feed direction. This
example assumes the cutting toward -Y direction). The com-
mand position must be shifted tôTcomp := T̂ −∆T̂ .

5.3 Experimental Results
Straight end milling test in -Y direction is conducted by

using the workpiece that has a stairway-shaped surface as
shown in Figure 11, such that the radial depth of cut varies
from 0.3, 0.6, to 0.9 mm as the tool moves to -Y direction.
Table 3 shows the mean value of cutting forces estimated by
the measured servo motor torque and the inclination and devi-
ation of the machined surface calculated by the normal cutting
forces. The compensation of the tool deflection is not done.
The mean value of actual forces measured by a dynamometer
is also shown in the table.

Then cutting test under the compensation of the tool de-
flection is conducted with the compensation command calcu-
lated based on estimated cutting forces shown in Table 3. The
machined surface is then measured by a electric micrometer in
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Figure 11. A schematic view of the machining test.

Table 3. Comparison of measured and estimated cutting forces and
the compensation in the command trajectory with various radial depth
of cut.

Radial Mean value of normal Compensation

depth of cutting force N command

cut mm Measured Estimated X mm B deg

0.3 37 38 -0.012 +0.038

0.6 63 58 -0.019 +0.060

0.9 91 76 -0.026 +0.083

+Z and -Y directions. Figures 12 and 13 show the surface error
profiles without (a) and with (b) the compensation measured
along the +Z and -Y direction, respectively. In Figure 13(b),
there are spike-shaped errors at distances 40mm and 80mm.
They are caused by a brief stop of the spindle motion in order
to change its tilting angle. In this experiment, this error is of no
importance. By applying the compensation, the inclination of
machined surface was reduced to near zero and the deviation
of the surface error became less than 1/3.

6 Conclusion
This paper presented a disturbance estimation methodol-

ogy on a Hexapod-type parallel kinematic machine tool of the
Stewart platform using a disturbance observer. The following
conclusion are drawn.

1. While a methodology to estimate a disturbance imposed
on a feed drive from an armature current in servo mo-
tors has been done widely on a conventional orthogonal
type serial kinematic feed drive, a disturbance observer
for a parallel kinematic feed drive becomes more complex.
Since a parallel kinematic feed drive has no linear guide-
way that is subject to higher friction, however, it is often
easier to estimate cutting forces from servo motor currents
than on a serial kinematic machine with guideways.

2. The estimation performance of the proposed disturbance
observer was experimentally validated by static tests and
straight cutting tests. A low-frequency component of the
cutting force was estimated in a sufficient accuracy for all
the directions. Although the estimation error in the Z di-
rection was relatively large because of modeling errors,
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(a) Without the compensation.

0 5 10 15 20 25 30 35 40

0

2

4

6

8

10

12

14

16

18

Surface error in the normal direction µm

D
ep

th
 fr

om
 to

p 
su

rf
ac

e 
m

m

R
d
=0.9 

R
d
=0.6 

R
d
=0.3 

(b) With the compensation.

Figure 12. Comparison of surface error profiles with and without the
compensation measured along the +Z direction (normal to the feed
direction).

this error is of no importance in practice.
3. A compensation method of the tool deflection by the es-

timated cutting forces is presented. The tool deflection
is estimated, and then the compensation command is cal-
culated by subtracting these estimates from the reference
trajectory. By applying the compensation, the inclination
of machined surface was reduced to near zero and the de-
viation of the surface error became less than 1/3.

In our future research, we will consider the application of the
proposed disturbance observer to the improvement of overall
motion accuracy of a parallel kinematic feed drive, such as the
compensation of gravity-induced errors.
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