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ABSTRACT

Due to recent technological trends in high-speed, high-
acceleration NC machine tools, the vibration control for a feed drive
system in NC machine tools is regarded of more importance. This
paper presents a tuning methodology of a fixed-structure feedback
controller for the damping control of feed drive systems. Unlike cel-
ebrated optimal control theories, the present tuning methodology is
based on a local search algorithm, and thus cannot always guarantee
to find the globally optimal solution. However, it offers much more
flexibility on the setup of the tuning objective and constraints, which
is crucial for practical controller design. As an application example,
the tuning of a fifth-order linear feedback controller for a feed drive
system in an NC machine tool is presented. Unlike a notch filter,
which is often used in conventional CNC units to cancel the mechani-
cal resonance, the designed controller does not introduce much phase
lag into the feedback loop, and thus offers a better closed-loop control
performance.

Key words: controller tuning, damping control, numerical optimiza-
tion, feed drive systems, frequency-domain loop-shaping design.

1 Introduction

Recent technological development has commercialized high-
speed, high-acceleration machining centers of the feedrate up to 60
m/min, and the acceleration rate up to 1G. In feed drive systems driven
by a servo motor and a ball screw, the torque is transmitted to a table
via a coupling and a ball screw. Therefore, the dynamics of feed drive
system always includes internal vibration modes due to the linear and
torsional vibration of the ball screw. Such vibration is a more critical
issue in high-speed feed drives (e.g. {1]). High-speed feed drives typ-
ically adopt a roller guideway, which generally exhibits lower damp-
ing compared to slide guideways. Furthermore, a ball screw of higher
lead also causes lower damping. Other critical vibration issues in-
clude the structural vibration of a machine. Higher acceleration often
introduces a low-frequency structural vibration to a machine base.

A typical servo controller in commercial CNCs uses a P (Pro-
portional) controller in the position feedback loop and a PI (Propor-

tional and Integral) controller in the velocity feedback loop. Although
some latest CNCs additionally adopt a higher order filter to compen-
sate specific problems, in most cases it is a filter of a simple structure
such as the notch filter (see Section 2.1), which can be manually tuned
by an engineer. Optimal control theories (e.g. [2]), which have been
a subject of intensive research for decades in academia, can be used
to design a high-order controller (filter) such that it exhibits “optimal”
control performance. It is, however, widely recognized that there have
not been many practical applications of such theories. One of critical
issues is that such theories explicitly and implicitly impose many re-
strictions, which are difficult to be satisfied in practical applications.
For example, as is well known, the order of H;- and H..-optimal con-
trollers must be the same as that of the plant model, and thus it often
becomes too high for practical implementation.

This paper presents a design methodology of a fixed-structure
feedback controller based on the frequency loop-shaping technique.
Design requirements are given in the form of the “desired shape” of
the system’s frequency response plot, just as in the He.. loop-shaping
design. However, unlike the H.. controller design, the order and struc-
ture of controller can be specified arbitrarily, and any additional re-
quirements or constraints can be imposed. The problem generally
becomes a nonconvex optimization problem. Since it is practically
impossible to globally solve the problem in an efficient manner, we
employ a local search algorithm. In many practical problems, local
search algorithms show satisfactory search performance, and it at least
“improves” the control performance. The present method offers an
intuitive and efficient way to incorporate the designer’s expertise and
understanding of the physical system and design objectives into the
controller design.

2 Tuning of a Fixed-structure Controller by
Frequency-domain Loop-shaping
2.1 Problem Statement
This section illustrates the proposed controller tuning method by
presenting an application example. Figure 1 depicts the schematics of
a feed drive system driven by a rotary servo motor and a ball screw.
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Figure 1. Schematic view of feed drive system
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Figure 2. Overview of a typical control system for a feed drive system

Table 1. Major specifications of feed drive test stand

Servo motor | Rated output, kKW 0.2
Rated/Maximum torque, Nm 0.64/19
Rated/Maximum rotation speed, rpm 3,000/ 4,000
Moment of inertia, kg-cm? 0.35
Resolution of rotary encoder, pulse/rev 8,192

Ball screw Diameter, m 0.2
Lead, m 0.02

Linear scale | Resolution, um/pulse 0.2

Figure 2 shows an overview of the servo control system. This struc-
ture is common in most CNC units commercially available in today’s
market.

Throughout this application example, a test stand of one-axis
feed drive system is used in experimentation. Its major specifications
are shown in Table 1. Figure 3 (solid line) shows the dynamics of the
servo motor used in the test stand. The frequency response from the
torque command to the motor’s angular velocity (the transfer function
from u(s) to v(¢) in Figure 2) was measured by using the frequency
sweep. There is a resonance at about 250 rad/sec. If the velocity con-
troller, C,(s), is a PI controller just as in typical commercial CNCs, it
can be easily seen that the resonance cannot be reduced without sacri-
ficing the bandwidth, no matter how PI gains are tuned. The objective
of this application example is to design C, (s) such that better damping
performance can be obtained without sacrificing the bandwidth.

We note that it is a common practice for servo engineers to
implement a compensation filter to reduce the mechanical resonance
mode. For example, in many commercial CNC units, a notch filter of
the following transfer function is often used to cancel the resonance:
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Figure 3. Frequency response of servo motor dynamics (solid: servo
motor only, dashed: with the notch filter)

where n (n = 1,2,---) is a design parameter that determines the notch
frequency. In Figure 3 (dashed line), the combined frequency re-
sponse of the servo motor and a notch filter is also shown. Although
the resonance is eliminated, significant phase lag is also introduced
at frequencies lower than the notch frequency. Therefore, when the
resonance frequency is relatively low and is close to the crossover fre-
quency, the notch filter should not be used, since it prevents to raise
the position loop gain and thus narrows the bandwidth of the closed-
loop system. This is a well-known disadvantage of the notch filter.

2.2 Frequency-domain Loop-shaping Design as a
Nonconvex Optimization Problem
Figure 4 illustrates inputs and outputs of the controller tuning. In
this example, the designer is required to specify the following design
requirements and constraints:

The order and structure of controller: The order and structure of
controller can be specified arbitrarily. In this example, suppose that
the controller structure is given as follows:
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where K := (g,a1 ,b1,ba,c1,00,d1,€1,e2, f1, ) € R!! is a set of tun-
able parameters. Let o; = 1 (the number of real poles), op =2 (the
number of possibly complex poles), B; = 1 (the number of real ze-
ros), and B, = 2 (the number of possibly complex poles).

“Desired shape” of gain plot: The designer is assumed to be capa-
ble to specify design requirements in the frequency domain, just as in
the Ho. loop-shaping design approach. Figure 5 (solid line) shows the
measured frequency response of the velocity open-loop system (the
transfer function from e, (s) to v(s) in Figure 2) with a PI velocity-loop
controller (C,(s) = Kyp(1 + K,;/s) with K,, = 0.05 and K,; = 800).
The original PI controller was manually tuned such that the best per-
formance is obtained.

Plus marks in Figure 5 represent the “desired shape” of the open-
loop frequency response, manually given by a designer. They are cho-
sen based on design requirements to cancel the mechanical resonance
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Figure 6. Measured velocity open-loop phase plot (solid line) and
phase constraints given by designer (circles)

and counter resonance, without sacrificing the bandwidth. They are
interpolated by using a spline curve and re-sampled at frequencies @y
(k =1,---,Nggin). The desired gain shape is denoted by Wyegireq (W)
k=1,-- 'aNgain)~

Note that the choice of the transfer function on which design
requirements are imposed is arbitrary, unlike the H.. loop-shaping de-
sign. That is, the “desired shape” does not have to be given on the
open-loop transfer function; for example, it can be given on the sensi-
tivity transfer function or the complementary sensitivity transfer func-
tion, depending on given design requirements.

Phase constraints: Note that no mathematical model of the plant
dynamics is used in the design procedure proposed in this paper. As a
heuristic way to secure the stability of the closed-loop system, phase
constraints are imposed to the open-loop system. In Figure 6, the cir-
cles represent phase constraints given by the designer. The controller
will be designed such that the phase plot of the open-loop system stays
“above” the circles. Although the choice of phase constraints is not
trivial, it should not be difficult for an experienced engineer. In this
example, phase constraints are designed based on the phase plot with
the original controller.

Optimization problem setup: The controller parameters are tuned

such that the frequency response of the open-loop system becomes
as close to the given desired shape as possible, while the closed-loop
and controller stability constraints are satisfied. This tuning criteria
are interpreted as the following minimization problem:

Naan (|C(mk)wplant (J(‘)k)l _ 1>2

min
Wdesired (mk)

K

(3)

k=1
such that

Cj0)Wptan (jOk) . - 1) _

im CUb Wit ] %) 20 E= 170 Nptase) @

ai>0(i:I7"'aal)7 biyci>0(i=1""7a2) 5)
where K € R!! is the controller parameter vector to be tuned, and
Woian: (jax) denotes the frequency response of the servo motor dy-
namics, which must be measured by the designer (Figure 3). Experi-
mental data can be directly used, and no mathematical modelling is re-
quired. The objective function represents the error between actual and
desired gain plots of the velocity open-loop system (C(s)Wpan (5)) at
given frequencies.

The constraints (4) represent phase constraints on the open-loop
system. Im(x) denotes the imaginary part of x. @ (k= 1,--+, Nppqqe)
is a complex scalar of the absolute value 1, and of the phase angle
representing the given phase constraint at the frequency ¢;. The con-
straints (4) assure that the phase angle at the frequency ¢y of the ve-
locity open-loop system (C(s)Wpan: (s)) is smaller than /.

The constraints (5) guarantee the stability of the controller it-
self. Notice that the constraints (5) are the sufficient condition for the
stability of the controller (2), and therefore, may introduce slight con-
servativeness.

Solving the problem: The above problem is generally a noncon-
vex optimization problem, and thus it is not practical to try to find the
global solution. In this paper, we simply employ the quasi-Newton
local search algorithm to find a local solution. Although there is no
guarantee that the global optimum is always found, it often shows suf-
ficient search performance in many practical applications. In this ex-
ample, we used a numerical optimization package, Optimization Tool-
box [3] by the Mathworks Inc., on MATLAB. The command fmincon
performs a local search using the sequential quadratic programming
method for constrained nonlinear optimization problems [3].

2.3 Tuning Results

The computation time to solve the problem (3~5) was only 3.4
sec on a PC with Pentium III 1 GHz processor. Figure 7 compares
frequency responses of the designed Sth order controller (denoted by
Crew(s)) and the original PI controller (denoted by C,4(s)).

Both controllers were implemented on a 32-bit DSP board with
the sampling time of 1.0 msec. Figure 8 shows measured frequency
responses of the velocity open-loop system with each controller. It
can be observed that Cye(s) significantly reduces a resonance peak
at about 250 rad/sec, without introducing much phase delay. Figure 9
compares measured frequency responses of the position closed-loop
system (the transfer function from r(s) to y(s) in Figure 2). The res-
onance and counter-resonance peaks are almost completely cancelled
by replacing the controller with Cpe,(s). Recall that this example
focuses only on the tuning of the velocity loop controller. As the posi-
tion loop controller (Cp(s) in Figure 2), a simple proportional gain is
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Figure 7. Frequency responses of controller dynamics (solid line: de-
signed 5th order controller (Cpew (s)), dashed: Pl controller (C,i4(s)))
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Figure 8. Frequency responses of velocity open-loop dynamics (solid:
Crew(s), dashed: C,4(s)). The dot-dashed line in the gain plot shows
the “desired shape,” Wy,qireq (@), and the circles in the phase plot rep-

resent phase constraints, @y (¢ ).

used, as is typical in commercial CNCs. In the experiments, the same
position loop gain, C,(s) = 150, was used in both Cpy4(s) and Cpew (s)
cases.

Figure 10 compares a time-domain step response of the posi-
tion closed-loop system. When C,4(s) is used, the vibration of the
frequency corresponding to the resonance in the position closed-loop
system can be observed. In order to reduce this vibration, one has
to reduce the position loop gain and/or the gains of the velocity loop
controller, which sacrifices the bandwidth of the closed-loop system.
Crew(s) successfully eliminated the vibration mode with the minimum
sacrifice of the bandwidth.

3 Concluding Remarks

This paper presents a design methodology of a fixed-structure
feedback controller based on the frequency-domain loop-shaping
technique. It should be noted that the problem setup shown in Section
2.2 was inspired by the classical H.. loop-shaping design approach.
Ibaraki and Tomizuka [4] presented an H.. optimization approach
for fixed-structure controllers based on the frequency-domain loop-
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Figure 9. Frequency responses of position closed-loop dynamics
(solid line: Cpew(s), dashed: Cp4(s))

Table posttion mm
8
V)

119.9-
119.8°
119.7+

1196

11, . . | )
.85 1.7 175 18 185
Time sec

Figure 10. Time-domain step responses of the position closed-loop
system (only the decelerating part is magnified) (solid line: Cpew(s),
dashed: C,4(s))

shaping setup. Compared to the celebrated H.. controller design, the
proposed approach offers much more flexibility on the setup of design
objectives and constraints. It does not even require a mathematical
model of the plant dynamics. The drawback is that the present de-
sign methodology cannot mathematically guarantee the performance
of the designed controller, and that the problem is not a convex op-
timization problem, unlike the H. optimization cases. However, in
many practical applications, it can be a more effective tool for a prac-
tical controller design than conventional optimal control theories.

Finally, it should be emphasized that the problem setup presented
in Section 2.2 is merely an example. It can be changed flexibly de-
pending on design requirements. In any cases, the designer is re-
quired to express controller design requirements in the form of “de-
sired shape” of the system’s frequency response plots.
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