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ABSTRACT

In this paper, the H., optimization problem of fixed struc-
ture linear controllers is considered. Applications of the problem
include tuning of SISO (Single-Input Single-Output) PID (Pro-
portional plus Integral plus Derivative) controller gains. The pro-
posed algorithm starts with transformation of the original prob-
lems into a static output feedback controller synthesis problem,
which does not impose any constraints on the controller structure
except for its order. Unlike the full-order H., controller synthe-
sis case, the Ho, optimization problem of static output feedback
controllers cannot be reparameterized as a convex optimization
problem. The cone complementarity linearization algorithm is
used to overcome the nonconvexity problem due to the constraint
on the controller order. The proposed algorithm is applied to the
design of a SISO PID controller for head positioning of a mag-
netic hard disk drive.

1 INTRODUCTION

The LMI (Linear Matrix Inequality)-based He. controller
synthesis theory (Gahinet and Apkarian, 1994) guarantees that if
the controller is allowed to have the same order as the plant and
every system matrix of the controller is freely tunable, then the
He optimization problem can be solved by convex optimization
and thus the global minimum can be always found. This paper
considers the case where the controller has a fixed structure and
only its parameters are tunable. The objective of this paper is to
extend the standard LMI-based H., synthesis algorithm for full-
order controllers to fixed structure controllers.
Applications of the present optimization problem include tuning
of SISO (Single-Input Single-Output) PID (Proportional plus In-
tegral plus Derivative) controller gains. Despite of technical ad-
vances in the design and implementation of sophisticated con-
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trollers, most of industrial controllers still adopt simple struc-
tures such as PID control. Application of the He optimization
theory to tuning of parameters of such fixed structure controllers
is, therefore, of interest and of practical importance. It should
be noted, however, that He optimization is not the only tuning
methodology for PID controllers. Numerous methods for tun-
ing of PID gains have been reported in the literature over years
(see, e.g. Astrom and Hagglund, 1995) and any fair compari-
son among those methods is likely to be inconclusive since their
derivations are usually based on different criteria and design phi-
losophy. The H., optimization theory has, however, received a
great attention over years in the field of control and its applica-
bility to practical problems has been reported. Especially when
the robustness of the closed-loop system is one of the main con-
cerns of the designer, H. optimization is quite a useful tool. Our
subsequent discussion focuses on the algorithm to solve the given
H. controller optimization problem.

A number of research efforts have been reported about H., opti-
mization of PID gains (Malan et. al., 1994; Grassi and Tsakalis,
1996; Kawabe and Tagami, 1997; Saeki et. al., 1998). Since the
standard full-order He, controller synthesis algorithm cannot be
applied to this problem, they either adopt nonlinear, nonconvex
search algorithms that require heavy computations, or simplify
the problem by imposing certain assumptions on the cost func-
tion or the controller structure, which makes it difficult to ap-
ply the algorithm to more general problems. For problems that
can be formulated as standard He optimization problems (“stan-
dard” in the sense that the cost function is given by a single Ho,
norm function), the advantages of the approach proposed in this
paper are clear; first, the proposed algorithm is a natural exten-
sion of the standard full-order H., controller synthesis algorithm
and only requires iteration of convex optimization. Since con-
vex optimization problems can be solved quite efficiently and
reliably by using well-developed techniques in semi-definite pro-



gramming (SDP) (e.g. Vandenberghe and Boyd, 1996), the pro-
posed approach is substantially faster than any approaches based
on nonconvex search algorithms. Furthermore, the proposed ap-
proach is not restricted to tuning of PID controllers. It can be ap-
plied to tuning of any linear controllers that satisfy certain struc-
tural conditions, which will be given later.

The proposed algorithm starts with reconstruction of the closed-
loop system model by using linear fractional transformations
(LFTs) such that all tunable controller parameters are “extracted”
as a full constant block. Then, the optimization problem of con-
troller parameters can be seen as an He synthesis problem of
static output feedback control. This transformation allows us to
avoid imposing constraints on the controller structure except for
its order.

Unlike the full-order controller synthesis case, the He., synthe-
sis problem of static (or more generally, reduced-order) output
feedback controllers cannot be reparameterized as a convex op-
timization problem (i.e. a minimization problem of a convex
function under convex set constraints). Therefore, in general,
it is quite difficult to find its global solution. The reduced-order
H. synthesis problem has, however, received considerable atten-
tion in recent years and several local search algorithms have been
proposed to solve this problem: e.g. the alternating projection
method (Grigoriadis and Skelton, 1995), the min-max algorithm
(Geromel et al., 1994), the D-K iteration and the L-R iteration
(lwasaki and Rotea, 1997). Global search algorithms for this
problem are discussed in Goh et. al. (1994) and Yamada and
Hara (1997), although they are computationally too expensive in
practical applications.

This paper employs the cone complementarity linearization al-
gorithm (El Ghaoui et. al., 1997) to solve this problem. Al-
though the cone complementarity linearization algorithm is a lo-
cal search algorithm and thus does not always guarantee to find
the global minimum, in most practical applications it shows ex-
cellent search performance, as shown in El Ghaoui et. al. (1997)
with extensive numerical examples.

The remainder of this paper is organized as follows. The pro-
posed H., optimization algorithm for parameters in a fixed struc-
ture controller is presented in Section 2. The transformation pro-
cedure of the original problem into the He, synthesis problem of
static output feedback controllers is shown in Section 2.1 and
the synthesis algorithm is presented in Section 2.2. In Section 3,
the proposed algorithm is applied to the design of a SISO PID
controller for head positioning of a magnetic hard disk drive. It
shows an example of simple and yet quite useful applications of
H. optimization to the design of practical controllers. Simula-
tions results show that the proposed approach can improve con-
troller performance without requiring profound knowledge and
experiences for manual loop-shaping.

2 H. OPTIMIZATION ALGORITHM FOR FIXED
STRUCTURE CONTROLLERS

2.1 Transformation into a Static Feedback Controller
Synthesis Problem
Suppose the closed-loop system is given as shown in Fig-
ure 1, where P(s) and C(s) represent a linear plant and controller,
respectively. The plant P(s) is partitioned as follows:

Pl]_(S) Plz(S) :|

Ple) = [le(s) P2(9) @)

where PL(s) has the same dimensions as the controller C(s).
Suppose the controller dynamics C(s) contains N parameters
ki,---,Kn, Which are independently tunable. The optimization
problem considered in this paper is given as follows:

Jmin_ [IFL(P(s).C(9))lle ()

SEN

where F(P(s),C(9)) := P11(S) + P12(S) (I — P22(s)C(5)) “1Pa1(9),
which is the closed-loop transfer function from d to z shown in
Figure 1.

In the H. optimization problem of fixed structure controllers,
only a part of system matrices of the controller C(s) can be tuned.
First, we present the transformation procedure of the original
problem (2) into the Ho, synthesis problem of static output feed-
back controllers. By using this transformation, the constraints on
the controller structure implicitly imposed in the problem (2) can
be avoided except for the constraint on the controller order.

To illustrate the procedure, we consider the following SISO PID
controller with approximate derivative and integral actions.
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@)
where Kkp, ki and kq are constant parameters that are indepen-
dently tunable. T; and tq are small constants for the approxi-
mate integral and derivative actions, respectively, and they are
assumed to be fixed. A state space representation of the con-
troller dynamics (3) is given by:

Suppose the plant P(s) is given in the following form:
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Figure 1. Closed-loop system configuration for the He optimization
problem
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Figure 2. Extraction of controller parameters

X(t) = AX(t) + B1d(t) + Bau(t)
Z(t) = Cix(t) + D11d(t) + D12u(t) (5)
e(t) CzX(t) + Do1d (t)

Then, define the extended plant P« (s) as follows:
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Notice that P« (s) contains two controller state variables x;(s) =
s ©(9) and x4(s) = 77€(9). By using the outputs of Px(s),
the control input u(t) can be given by

e(t)

ut) = [ko ki kaJwit) = [kp ki ka] | Z?)(:)Ll (t)] (7)
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The entire closed-loop system can be seen as shown in Figure 2,
where K := [kp ki kq] is a constant matrix.

This transformation implies that the Ho, optimization problem of
the controller parameters can be seen as the H., synthesis prob-
lem of static output feedback controllers for the extended plant
model Pk (s), which does not impose any constraints on the con-
troller structure except for its order. The algorithm for the He
(sub-)optimization of static output feedback controllers will be
presented in the next section.

The above transformation procedure is not restricted to PID con-
trollers. The optimization algorithm proposed in this paper can
be applied to any linear controller structures that can be trans-
formed into the form shown in Fig. 2 by using this transforma-
tion. We consider the controller structures that satisfy the follow-
ing condition.

Lemma 1. Suppose the the controller has a state space repre-

sentation (A, Bc,Ce, D) such that the matrix écc gc} can be
C
rewritten in the following form:
Ac Bc
=P+ PKP 8
{Cc DJ L+ PoKP3 (8)

where P, P, and P5 are constant (i.e. untunable) matrices with
appropriate dimensions and K is a full block of independently
tunable controller parameters. Then, the closed-loop system can
be transformed into the form shown in Figure 2.

Proof: See (Ibaraki and Tomizuka).

Remarks:
1. The PID controller (3) satisfies the above condition with

I SR B O Py
Py [ 0 OTd TOdJ P, [2J P3 [0 _% %J(g)
and K = [kp ki kq].
2. If the controller has a state space representation

(Ac,Bc,Ce,D¢) such that the full matrix K, the entries of
which are all independently tunable, can be obtained by elim-
inating row(s) and/or column(s) of untunable entries from the
Ac Bc
Cc D¢
into the form shown in Fig. 2. This condition is included in the
condition in Lemma 1.

matrix , then the closed-loop system can be transfered

3. Another example of the controller structure transformable
into the form shown in Figure 2 is a SISO controller of the



following transfer function.

bn 18" 1+ +bis+ Db
Go(s) = h—1 : + D1S+ Do (10)
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where g and b; (i = 0,---,n— 1) are independently tunable pa-
rameters. Its controllable canonical form is

0 1 0 0
= | | |0 e
—ap —ag -+ —an-1 1
U(t) = [bo b]_ bn—l] Xc (11)

This representation satisfies the condition in the previous
doai - an-1
boby---bn1]’

4. Any controller, the system matrices of which are all
freely tunable, can be transformed into the form shown in Fig. 2
oo | Ac Be
with { C DJ
the reduced-order controller synthesis problem can be always
transformed into the static output feedback controller synthesis

problem).

remark. K is given by K =

, ho matter what the order of the controller is (i.e.

2.2 H. Optimization of Static Output Feedback Con-
troller

This section presents the algorithm to solve the H., optimiza-
tion problem of static output feedback controllers. Suppose that
the original He optimization problem of fixed structure controller
parameters (2) can be transformed into the following He opti-
mization problem of the static output feedback gain matrix K, as
shown in the previous section.

min 1R (Pe(9).K) . (12)

Rewrite the extended plant model P« (s) as:

A By B
Pc:| C | DuD1 (13)

G D21 Do

The plant dimensions are given by A € O™, Dy € OP1xM
and Dy, € OP2*™ The objective of this section is to present
an algorithm to find an He., sub-optimal solution K € OM*P2

for the problem (12) (i.e. to find K € O™*P2 such that
lIFL(P(s),K)l|,, < yfor giveny> 0).

The standard LMI-based He. controller synthesis algorithm
(Gahinet and Apkarian, 1994) is based on the following theorem.

Theorem 1. There exists a dynamic controller K(s) of order k
suchthat ||FL(P«k(s),K(s))|l,, < Yif and only if there exist two
symmetric matrices X € O0™"MandY € O™" such that

AX+XAT XC] By ]
NlTl CiX -yl D11 | A4<0 (14)
Bl DI -V
ATY +YAYB; C] ]
G [ BIY —viDj|A<0 (15)
C: Du -]
ﬁ( H >0 (16)
rank(XY —1) <k 17

where Aj = diag{Niz,1}, AL = diag{N21,1}, Ni2 and Np; are
bases of the null spaceof [ B} D], ] and [Cz D21 ], respectively.

In the full-order controller synthesis case, i.e. k> n, the condi-
tion (17) is trivially satisfied and the global solution for the LMI
constraints (14)~(16) can be computed by convex optimization.
For the static controller synthesis problem (12), however, we
must search for X and Y that satisfy (14)~(17) with k=0. The
rank condition (17) is not a convex function constraint, which
makes the reduced-order He, synthesis problem difficult to solve.
Notice that the reduced-order He, controller synthesis problem
can be rewritten as a rank minimization problem under LMI con-
straints (EI Ghaoui and Gahinet, 1993):

r)rw rank (XY —1) subject to (14)~(16) (18)

3

For the static output feedback controller synthesis, the above
rank function can be equivalently replaced by the trace function
by using the following lemma.

Lemma 2. SupposeX € O™ " andY € O™" are symmetric and
satisfy (16). Then, rank (XY — 1) = 0 if and only if tr (XY) = n.

Proof: See (Apkarian and Tuan, 1999).

Lemma 2 implies that there exists a constant matrix K* such that
IFL(Pk(s),K*)|l < yifand only if

r)rgi\ptr (XY) =n subject to (14)~(16) (19)



This objective function is still not a convex function of X and
Y. We employ the cone complementarity linearization algorithm
(El Ghaoui et. al., 1997) to solve this problem. By linearizing
the cost function with respect to X and Y, we have:

ggin_ltr (Xi—1Yi+XYi-1)  subjectto (14)~(16)  (20)
With Xj_1 and Yi_; fixed, X; and Y; that minimize the trace func-
tion in (20) can be found by a convex optimization. This obser-

vation suggests the following iterative algorithm to find X and Y
that satisfy (19).

Algorithm (Static output feedback H., controller synthesis)

1. Choose initial Xo = XJ € O™" and Yo = Y§ € O™ that
satisfy (14)~(16). If there are none, then the problem is
infeasible. Seti = 1.

2. Solve the convex optimization problem (20) for X; and Y;.

3. Seti =i+ 1and repeat Step 2 until convergence.

The objective functiont; :=tr (Xi_1Y; + X;Yi_1) is non-increasing
at each step, i.e. tj <tj_1 (El Ghaoui et. al., 1997). Since t; is
lower bounded by 2n, the algorithm at least converges to one of
local minimums.

Although this algorithm is a local search algorithm and thus does
not always guarantee to find the global minimum, in most prac-
tical applications it shows excellent search performance, as re-
ported by El Ghaoui, et. al. (1997) with extensive numerical
examples.

Once the optimal X and Y that satisfy (19) are found, the
sub-optimal output feedback gain matrix K*, which makes the
closed-loop He norm (12) less than y, can be computed by solv-
ing the following convex optimization problem for K* (Gahinet
and Apkarian, 1994).

{ATXc|+Xc|A XaB1 Cf -I [Cg-l
BiXa ~ —¥ Di; |+ |Dj | KT [B}Xq 0D],]
[ Ct D11 —V|J [ 0 J
X B2
+ 0 K* [Cz Doy 0] <0 (21)
D12

where Xg = X~1 =Y. Theorem 1 guarantees the existence of a
solution K* for this problem.

3 APPLICATION EXAMPLE

3.1 Model Description
This section presents an application example to illustrate the
H. optimization algorithm proposed in this paper. We consider

read/write head

Figure 3. Schematic view of a hard disk drive

the design of a SISO PID controller for track-following control
of a head positioning servo system of a magnetic hard disk drive
(HDD).

Fig. 3 shows the schematic view of an HDD. The head posi-
tioning servo system consists of the magnetic read/write head,
the arm, and the voice coil motor (VCM) actuator. Fixed servo
bursts written on the disks provide information on the deviation
of the head from the center of a track.

The head positioning control for an HDD has attracted consid-
erable attention in the literature (e.g. Steinbuch and Norg, 1998;
Chew, 1995). Normal operation of an HDD requires quick ac-
cess to many different tracks. Furthermore, the sensitivity of
the head position to external disturbances, such as the vibrations
due to the spindle motor rotation, track irregularities, position
sensing noise, mechanical vibrations and shocks, is also an im-
portant issue for controller design. To satisfy these two differ-
ent requirements, the controller for the head positioning servo
system usually has two modes; the track-seeking mode and the
track-following mode. In this paper, we focus on the design of a
feedback controller for the track-following mode. Track to track
pitches determine the required accuracy of positioning the head;
the smaller the pitch, the smaller the error specification. This is
a strong technological trend exploited by all HDD manufactures.
The VCM actuator dynamics is modeled as follows.

w? w3 —0.5D3s5+1
P +20mS+ w2 P+ 20ups+ s 0.5D1s+1
(22)
The first term represents the gain, and the second term represents
the double integrator characteristics at high frequencies and flat-
tening characteristics at low frequencies due to the pivot friction.
The high resonant mode is also included in the model. The last
term ~epoi>it represents the Pade approximation of computa-
tional delay of the controller. The parameters in the model (22)
are identified based on measured frequency responses of the ex-
perimental setup. The simulated frequency response of the model
(22) and the measured frequency response are shown in Fig. 4.
The high mechanical resonant mode appears at 3.6 kHz.

P(S) = chm
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Figure 4. Simulated and measured frequency responses of the VCM
actuator

3.2 Controller Design

The objective of this section is to design the PID controller
(3) for this plant by using the loop-shaping technique based on
the H., optimization algorithm proposed in this paper. The opti-
mal PID controller is obtained as a redesigned version of a sec-
ond order compensator tuned manually by an expert.
The design requirements are given as follows. 1) The open-loop
cross-over frequency should be larger than f; = 600 Hz to secure
a sufficient bandwidth of the closed-loop system. 2) The gain
and phase margin should be larger than 5 dB and 40 degrees, re-
spectively, for the robustness of the closed-loop system. 3) The
peak gain of the closed-loop sensitivity transfer function should
be as low as possible to reduce the resonant vibrations.
The following second or third order controller is conventionally
used in industrial applications.

(st n1)(s+ wn2)

U9 = Kt oan) 5+ o) 23
. (s+on1)(s+ wn2)(s+ wna)

O = o ranraw Y

where wn1 = 170 X 270 Wy = 2 X 1074 X 2T Wy = 170 x 2T,
Wy2 = 7000 x 211, wpz = 750 x 210 wy3z = 1190 x 21, K1 =
8.334 x 10* and K, = 10.061 x 10%. These controller parame-
ters are designed by an experienced servo control engineer based
on the manual loop-shaping techniques such that the closed-
loop system achieves given performance requirements. Note that
Co(s) is designed to reduce the peak gain of the sensitivity trans-
fer function by adding the term (s+ wn3)/(S+ wy3) to introduce

additional phase lead around the cross-over frequency. The fre-
quency responses of C;(s) and Cy(s) are shown in Figure 5 (a).
We design the PID controller (3) by using He optimization such
that it shows “better” performances (with respect to the above
design requirements) than the conventional controllers C; (s) and
Cy(s) designed by the manual loop-shaping. Notice that the sec-
ond order controller Cy1(s) is equivalent to the PID controller in
the form (3) (kp = 1.147 x 104, ki = 6.200 x 106, kg = 5.173,
Ti = 0.0002 x 21t and tg = 1/(7000 x 21)), which implies that
the optimized PID controller should be at least better than C (s).
The optimization objective is given as follows:

T(jo)Wu(jo)

Find K = (kp, i, ko) such that | o5 Sy o)

<1 (25)

[

where T (jw) is the closed-loop complementary sensitivity func-
tion and S jw) is the closed-loop sensitivity transfer function de-
fined respectively by

__P(sC(s)
T = 13 pEcE (26)
1
S = 1T5PEcE @7)

where P(s) and C(s) denote the transfer function of the plant and
the PID controller, respectively. The constants T; and 14 in (3)
are set to T; = 0.0002 x 21tand 1g = 1/(7000 x 211) such that the
PID controller has the same poles as Cy(S).

The performance filters Wy(s) and Wp(s) in (25) respectively
specify the desired shape of |T(jw)| and |(jw)|. We design
W,(s) and Wj(s) based on the actual closed-loop frequency re-
sponses of T(jw) and S(jw) with the conventional controllers
Cu(s) (or Cy(s)) used in the feedback loop, such that the solu-
tion for the problem (25) achieves better performances than the
conventional controllers. This example illustrates quite a simple
and yet useful application of the H., optimization to the design
of practical controllers.

Wi (s) and Wy(s) are given as follows.

o _ 245x10s+4.62x 103

B s+4.05 x 10°

_ 3.25x 10712+ 1.67 x 1035+ 4.09 x 10°
B $2+3.90 x 10%s+ 3.62 x 10*

(28)

(29)

Their inverse frequency responses are shown in Figure 5 (b) and
(c), respectively.

The problem (25) can be transformed into the He., (sub-)opti-
mization problem of static output feedback controllers as shown
in Section 2.1. It can be solved by applying the algorithm pre-
sented in Section 2.2.



All computations have been carried out by using the SDP solver
package LMI Control Toolbox (Gahinet et al., 1994) on MATLAB.
The optimal set of controller parameters K = [kp ki kd] has been
obtained after 31 iterations over R; and S§. The iteration was ter-
minated when tr(R;S) became less than 10.001. Note that the
overall plant Pk (s) is tenth order (the original plant P(s) is fifth
order, the controller adds two state variables, and the filters have
totally three state variables). The optimal gains kp = 4.607 x 103,
ki =5.932 x 10% and kq = 5.864 achieve the closed-loop He, gain
(25) of 1.1130.

The frequency responses of the designed PID controller C(s),
the closed-loop complementary sensitivity transfer function T (s)
and the sensitivity transfer function §(s) with the designed PID
controller are shown in Figure 5 (a)~(c). It can be observed from
Figure 5(c) that the peak gain of the sensitivity transfer function
is reduced compared to the cases where the manually designed
controllers Cy(s) and Cy(s) are used. Table 1 shows the order,
cross-over frequency, gain margin, phase margin and the peak
gain of the sensitivity transfer function for each of three con-
trollers. It shows that the designed PID controller satisfies all of
the given performance specifications.

The superiority of the designed PID controller to the conven-
tional controllers, which are finely tuned by an experienced
servo engineer, can be explained by its two complex zeros at
s= —3.97 x 1024 9.14 x 10%j. They introduce additional gain
drop at the corresponding frequency and phase lead at higher fre-
quencies to the controller frequency response (see Figure 5 (a)),
which leads to desirable drop of the peak gain of the sensitivity
transfer function. It is generally difficult to deal with complex
zeros/poles by the manual loop-shaping. The “automatic” loop-
shaping by the H., optimization has naturally advantages to find
a controller that achieves better performance.

4 CONCLUSION

In this paper, the Ho, optimization algorithm for parameters
of a fixed structure linear controller was presented. The proposed
algorithm consists of two steps: 1) “Extraction” of the controller
parameters from the closed-loop system as a full constant block
by using LFTs and 2) H., synthesis of a static output feedback
controller. Unlike the full-order Ho, controller synthesis case, the
H.. optimization of static output feedback controllers cannot be
solved by convex optimization. The cone complementarity lin-
earization algorithm is used to overcome the nonconvexity prob-
lem due to the constraint on the controller order. Although it is
a local optimization algorithm, in most cases it shows excellent
search performances.
The proposed algorithm was applied to the design of a SISO PID
controller for head positioning of a magnetic hard disk drive.
The weight functions used in the optimization objective func-
tion were chosen such that the optimized controller achieves bet-
ter performance than the controller conventionally used for this
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Figure 5. Comparison of closed-loop frequency responses with two con-
ventional controllers and the designed PID controller used in the feedback
loop (“C1": C1(S) given in (23), “C2": Cy(S) given in (24) and “PID": the
PID controller tuned by solving the problem (27))



Table 1. Performance comparison of two conventional controllers (Cy
and Cp) and the designed PID controller (PID)

C (o)) PID

Order 2 3 2
Cross-over frequency (Hz) 636 622 625
Gain margin (dB) 532 | 5.02 | 553
Phase margin (deg) 23.36 | 35.82 | 41.63

Sensitivity function peak (dB) | 9.04 | 750 | 7.20

plant. Simulation results showed effectiveness of the proposed
He. optimization algorithm as a fine tuning method to improve
controller performance without requiring profound knowledge
and experiences in manual loop-shaping.
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