
Nonconvex Optimization Problems in H1 Optimization and Their

Applications

by

Soichi Ibaraki

B.S. (Kyoto University, Japan) 1994

M.S. (Kyoto University, Japan) 1996

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy in Engineering

in

Mechanical Engineering

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Masayoshi Tomizuka, Chair

Professor Andrew Packard

Professor Laurent El Ghaoui

Professor Seth Sanders

Fall 2000



The dissertation of Soichi Ibaraki is approved:

Chair Date

Date

Date

Date

University of California at BERKELEY

Fall 2000



Nonconvex Optimization Problems in H1 Optimization and Their

Applications

Copyright Fall 2000

by

Soichi Ibaraki



1

Abstract

Nonconvex Optimization Problems in H1 Optimization and Their Applications

by

Soichi Ibaraki

Doctor of Philosophy in Engineering in Mechanical Engineering

University of California at BERKELEY

Professor Masayoshi Tomizuka, Chair

The LMI (linear matrix inequality)-based H1 controller synthesis theory guarantees that

if the controller is allowed to have the same order as the plant, and every system matrix of

the controller is freely tunable, then the H1 optimization problem can be solved by convex

optimization and the global optimum can be always found. This dissertation focuses on an

extension of H1 optimization theories to the problems that cannot be parameterized as a

convex optimization problem.

This dissertation �rst presents an extension of the LMI-based H1 controller synthesis al-

gorithm for full-order controllers to �xed structure controllers. A critical limitation of the

LMI-based full-order H1 controller synthesis algorithm is that it allows no additional con-

straint to be imposed on the problem; the closed-loop H1 norm constraint must be the

only constraint imposed on the problem in order for it to be globally solvable by convex

optimization. In the case where the controller has a �xed structure and only its parame-

ters are tunable, the problem cannot be reparameterized as a convex optimization problem.
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The proposed algorithm starts from the transformation of the �xed-structure H1 controller

optimization problem into an H1 optimization problem of a static output feedback con-

troller. Then, the cone complementarity linearization algorithm is used to locally solve the

H1 optimization problem of a static output feedback controller.

Based on the proposed H1 optimization algorithm, this dissertation demonstrates a tuning

method of controller parameters to explicitly design frequency responses of the closed-loop

system. The proposed approach o�ers an intuitive and eÆcient way to re-tune controller

parameters, which were �nely tuned by an expert engineer, and improve the control per-

formance. The following three practical application examples are presented: 1) the tuning

of a single-input single-output (SISO) PID (Proportional plus Integral plus Derivative)

controller for head positioning of a magnetic hard disk drive (HDD), 2) the tuning of a

discrete-time observer feedback controller for head positioning of an HDD, and 3) the tun-

ing of a multi-input single-output (MISO) PI (Proportional plus Integral) controller for the

lateral control of an automated heavy-duty vehicle (HDV). The e�ectiveness of the proposed

re-tuning method is demonstrated by simulation and experimentation.

Secondly, this dissertation considers the BMI (bilinear matrix inequalities) formulation of

H1 optimization problems. The BMI framework o�ers an uni�ed approach to formulate a

further general class of H1 optimization problems with arbitrary constraints or additional

optimization objectives. BMI problems are generally nonconvex optimization problems and

are proven to be NP-hard. This dissertation proposes a novel local search approach for

solving general BMI problems. The proposed algorithm is based on the semide�nite pro-

gramming (SDP) relaxation approach to BMI problems and the linearization-based local

search algorithm, which is analogous to the algorithm employed to solve reduced-order H1

controller synthesis problems. Four numerical experiments are conducted to show the search
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performance of the proposed approach.

Finally, the proposed �xed-structure H1 optimization algorithm is applied to the H1 opti-

mization problem of state observers. First, the H1 optimization algorithm of Luenberger-

type state observers is presented. The proposed approach is applied to the design of fault

detection �lters for lateral control of automated passenger vehicles. The H1 optimization

of Luenberger state observers is then extended to the design of more general mismatched

state observers (i.e. system matrices of the observer do not necessarily coincide with those

of the plant model), and a novel application of H1-optimal mismatched state observers to

the observer-based feedback control is presented. The mismatched state observer is tuned

by using H1 optimization such that it not only provides good estimation of state variables

of the plant, but also stabilizes the overall closed-loop system under the feedback lineariza-

tion control scheme. As an application example, the proposed approach is applied to lateral

control of HDVs.

Professor Masayoshi Tomizuka

Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Background

Optimal control has been one of the main research topics in control engineering. In par-

ticular, the H1 control theories and their applications have attracted numerous research

e�orts since the mid-1980s. This dissertation focuses on an extension of H1 optimization

theories to a further general class of problems of practical interest.

In the late-1980s, Doyle et al. [18] stated that the necessary and suÆcient condition for the

existence of full-order H1 (sub-)optimal controllers can be written in the form of two alge-

braic Ricatti equations (AREs). Furthermore, explicit state-space formulas were given for

a particular solution called the \central controller." All solutions are parameterized based

on the central controller by using a linear fractional transformation (LFT) involving a free

dynamic parameter, Q(s).
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This approach o�ers an eÆcient and numerically reliable way of computing full-order H1

controllers. It has, however, inherent restrictions that limit its applicability. One major

drawback of the ARE-based approach is that it overemphasizes the central solution among

all possible choices of H1 (sub-)optimal controllers. In most cases, there is no explicit

connection between the free parameter, Q(s), and the properties of the controller or the

closed-loop system. As a result, the diversity of H1 controllers is hardly exploited in the

ARE-based H1 controller synthesis approach, and the central controller is almost exclu-

sively used, despite its certain undesirable properties. For example, the reduced-order H1

controller synthesis problem has attracted considerable research interests since the early

works on H1 control. The central H1 controller is typically high order | at least as

high as and quite often much higher than the plant model due to dynamic performance

weightings augmented in the optimization process to achieve the desired performance. The

reduced-order (or �xed-order) H1 controller synthesis is, therefore, of interest in practical

applications. The Q-parameterization approach seems inadequate for this purpose.

In the mid-1990s, Gahinet and Apkarian [33] and Iwasaki and Skelton [60] proposed an

alternative approach to the H1 controller synthesis. It was shown that in the full-order

controller synthesis case, i.e. the case where the controller is allowed to have the same order

as the plant, and every system matrix of the controller is freely tunable, the H1 optimiza-

tion problem can be reparameterized in the semide�nite programming (SDP) form. The

AREs that characterize full-order H1-optimal controllers are replaced with linear matrix

inequalities (LMIs), and the solution set of these inequalities parameterize all (sub-)optimal

H1 controllers.

The SDP is a convex optimization problem, i.e. a minimization problem of a convex objec-

tive function under convex set constraints. In the �eld of applied mathematics, numerous
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research e�orts have been devoted to the development of eÆcient and reliable numerical

algorithms to solve convex optimization problems. In particular, SDPs can be solved very

eÆciently, both in theory and in practice, by using interior-point methods that have been

the subject of intense research in this �eld since the mid-1980s. Recent technical advances

in computing capability of computers have made the LMI-based approach particularly at-

tractive. The important roles of SDP formulations have been recognized not only in H1

control theories but also in many engineering optimization problems.

Although the LMI-based H1 controller synthesis algorithm is generally not as numerically

eÆcient as the ARE-based approach, it has certain crucial advantages from the viewpoint of

the extendibility to more general problems. One of its major advantages is that important

design parameters in the controller design, such as the controller order or the damping of

the closed-loop modes, have a clear interpretation in terms of optimization variables in the

LMI formulation. This formulation is, therefore, propitious to the design of \better" H1

controllers.

For example, the LMI-based approach o�ers an explicit formulation of reduced-order H1

controller synthesis problems. The constraint on the controller order can be interpreted as

a rank constraint imposed in addition to the LMI constraints in the full-orderH1 controller

synthesis case. The reduced-order H1 controller synthesis problem is still a hard problem

to solve, since the additional rank constraint is not a convex set constraint, and thus the

problem is a nonconvex optimization problem. The nonconvexity of the reduced-order H1

controller synthesis problem means that it can have multiple local optima. Therefore, it is

hard to �nd the global optimum in an eÆcient way. It is, however, easier to �nd a local

optimum by applying any descent search approaches. In the mid-90s, several local search

algorithms were proposed for reduced-order H1 controller synthesis.
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This dissertation �rst considers an extension of reduced-orderH1 controller synthesis to the

H1 optimization of �xed-structure controllers. Despite the technical advances in the de-

sign and implementation of sophisticated controllers, most industrial controllers still adopt

simple structures such as PID (Proportional plus Integral plus Derivative) control. To imple-

ment classical full-order H1 controllers, one must re-design the entire controller structure,

which often requires considerable e�ort and cost. The extension of the H1 optimization

to the tuning of parameters of �xed structure controllers is, therefore, of interest and of

practical importance. Based on the proposed �xed-structure H1 controller optimization

algorithm, the re-tuning methodology of controller parameters to improve the control per-

formance is presented.

Besides constraints on the controller order or structure, the practical controller design must

often deal with more general constraints or multiple optimization objectives. The following

are examples of controller design problems that require additional constraints or optimiza-

tion objectives to be imposed on the H1 optimization problem:

� The classical H1 control synthesis theories do not explicitly guarantee the stability

of the optimal controller. Although heuristic approaches to avoid the instability of

the controller are available, some applications require the constraint on the controller

stability to be explicitly imposed.

� Excessively high controller gains are often undesirable for practical implementation.

In such cases, constraints must be imposed on the range of each controller parameter.

� Multi-objective optimization is crucial in many practical controller design problems.

For example, the controller design for multi-input multi-output (MIMO) plants often

requires minimizing H1 norms of multiple transfer functions between di�erent in-
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put/output channels. In the classical H1 optimization approach, multiple H1 norm

objective functions are approximated by a single H1 norm function, which likely in-

troduces a signi�cant conservativeness to the controller design, unless the dynamics

of each transfer function is suÆciently decoupled.

� Another practical example of multi-objective optimization is the design of robust

controllers for plants with parametric uncertainties. When the ranges of parametric

perturbations are known, one of the simplest robust controller design methodologies

is to optimize the controller such that it achieves the desirable control performance for

multiple plant models corresponding to \extreme" values of uncertain parameters. In

fact, this approach o�ers the least conservative controller when uncertain parameters

are assumed to be time-invariant or slowly changing. In such cases, the �-synthesis

approach often results in more conservative controllers.

The conventional H1 controller synthesis algorithm cannot be applied to any of the above

problems. In fact, any additional constraints that contain the controller dynamics make the

H1 optimization problem a nonconvex optimization problem.

In the mid-1990s, Goh et al. [39] presented the bilinear matrix inequality (BMI) formulation

that o�ers a uni�ed approach to those problems. Unlike LMI problems, BMI problems are

generally nonconvex optimization problems and are proven to be NP -hard, which means

any algorithms that globally solve general BMI problems are quite likely non-polynomial

time algorithms. The practical importance of solving BMI problems is, however, clear for

further generalization of H1 optimization theories.

In recent years, considerable research e�orts have been devoted to the development of algo-

rithms that solve BMI problems in an eÆcient and reliable manner. Most of the algorithms
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found in literature that claim the applicability to control-related problems of practical size

are local search algorithms. It is, however, highly likely for local search approaches to

fail to reach the global optimum due to the nonconvex nature of BMI problems. Recent

works on this subject also include global search approaches that are guaranteed to �nd the

global optimum. Most of global search algorithms found in the literature are variations

of the Branch and Bound (BB) method based on di�erent formulations of BMI problems.

Although the computational eÆciency is a major focus for all of those works, none of the

global search algorithms are polynomial-time algorithms due to the NP-hardness of BMI

problems. Therefore, their applicability to problems of practical size is questionable.

This dissertation proposes a novel algorithm to solve general BMI problems. Although

the proposed algorithm is a local search algorithm, it is based on a completely di�erent

formulation of BMI problems from conventional, simpler local search algorithms, and the

proposed approach can more likely �nd the global solution in practice. Considering that

any global search algorithm is a non-polynomial time algorithm, the proposed approach is

more practical than any existing global search algorithm from the viewpoint of the com-

putational eÆciency. It is more reliable than conventional, simpler local search algorithms

from the viewpoint of the likelihood of �nding the global solution.

The next section summarizes the main contributions of this dissertation in further detail.

1.2 Contributions of the Dissertation

H1 and Scaled-H1 Optimization of Fixed Structure Controllers

The �rst contribution of this dissertation is an extension of the LMI-based H1 controller
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synthesis algorithm for full-order controllers to �xed structure controllers. The proposed

algorithm �rst transforms the original �xed-structure controller optimization problem into

an H1 synthesis problem of static output feedback controllers, which does not impose any

constraints on the controller structure except for the order. Then, the cone complementarity

linearization algorithm proposed by El Ghaoui et al. [23] is applied to locally solve this

problem. The proposed approach is also applied to the scaled-H1 optimization problem of

�xed structure controllers, which is often used as an approximation of �-synthesis problems

for mixed real/complex model uncertainties.

Application Examples: As a part of the �rst contribution, this dissertation demonstrates

a tuning method of controller parameters to explicitly design frequency responses of the

closed-loop system based on the proposed H1 optimization algorithm. The proposed ap-

proach o�ers an intuitive and eÆcient way to re-tune controller parameters, which were

�nely tuned by an expert engineer, and improve the control performance. The following

three practical application examples are presented: 1) the tuning of a SISO PID controller

for head positioning of a magnetic hard disk drive (HDD), 2) the tuning of a discrete-time

observer feedback controller for head positioning of an HDD, and 3) the tuning of a multi-

input single-output (MISO) PI (Proportional plus Integral) controller for the lateral control

of an automated heavy-duty vehicle (HDV). The e�ectiveness of the proposed re-tuning

method is demonstrated by simulation and experimentation.

Rank Minimization Approach for Solving BMI Problems

As a second contribution, this dissertation proposes a novel algorithm to solve general

BMI (bilinear matrix inequality) problems. The BMI framework o�ers an uni�ed approach
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to formulate a general class of H1 optimization problems with arbitrary constraints or

additional optimization objectives. First, it is shown that general BMI problems can be

equivalently transformed into a rank minimization problem under LMI constraints. The

close analogy of this formulation to the well-known SDP relaxation approach to a certain

class of combinatorial problems is also discussed. Then, a linearization-based local search

algorithm is proposed to locally solve this formulation. The algorithm is analogous to the one

employed to solve the H1 optimization problem of static output feedback controllers. The

proposed approach is more practically applicable than any existing global search algorithms

from the viewpoint of the eÆciency, and more reliable than conventional, simpler local search

algorithms from the viewpoint of the likelihood of �nding the global solution. Four numerical

experiments are conducted to show the search performance of the proposed approach.

H1 Optimization of Luenberger State Observers

The third contribution of this dissertation is an extension of the H1 optimization algorithm

of Luenberger state observers. Similarly as the H2-optimal state observer, which is known

as the Kalman �lter, the design method of H1-optimal Luenberger state observers has been

well known in the literature. The conventional formulation of H1 state observers does not,

however, allow the augmentation of dynamic performance weightings in the optimization

setup, since it makes the problem a nonconvex optimization problem. It is shown that the

proposed H1 optimization algorithm of �xed-structure controllers can be also applied to

such cases. This dissertation demonstrates an explicit design method of the estimation error

dynamics of Luenberger state observers in the frequency domain by using H1 optimization.

Application Example: As an application example in which the frequency-domain es-
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timation error performance of a Luenberger state observer is particularly important, the

proposed approach is applied to the design of fault detection �lters for lateral control of

automated passenger vehicles. Simulation results show the e�ectiveness of the proposed

approach in designing the estimation error dynamics of state observers.

H1 Optimization of Mismatched State Observers

The �nal contribution of this dissertation is the extension of the H1 optimization of Lu-

enberger state observers to the design of more general mismatched state observers, and a

novel application of H1-optimal mismatched state observers to the observer-based feedback

control. The mismatched state observer is tuned by using H1 optimization such that it not

only provided good estimation of state variables of the plant, but also stabilized the overall

closed-loop system under the feedback linearization control scheme.

Application Example: The proposed approach is applied to the design of a state ob-

server for the lateral control of HDVs. Numerical simulations demonstrate that the feedback

linearization control scheme and the proposed mismatched state observer show favorable

closed-loop responses for a wide range of longitudinal velocities of the vehicle.

1.3 Outline of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 presents a brief review

of convex optimization and the LMI-based H1 control optimization algorithms, which are

essential to understanding the contributions of this dissertation. In Chapter 3, the H1 and
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scaled-H1 optimization algorithms of �xed-structure controllers are proposed. Three appli-

cation examples of the �xed-structure H1 controller optimization are presented. Chapter 4

presents the BMI formulation of H1 optimization problems for their further extension to

more general problems. The rank minimization approach to solve general BMI problems is

proposed. Chapters 5 and 6 discuss design methodologies of H1-optimal state observers.

First, the H1 optimization algorithm of Luenberger state observers is presented in Chap-

ter 5. Chapter 6 presents the H1 optimization algorithm of mismatched state observers

and its application to state estimation under the feedback linearization control scheme.

1.4 Notation

The following notation will be used throughout the dissertation.

For a square matrix X 2 Rn�n, X � 0, X � 0, X � 0 and X � 0 denote that X

is symmetric and positive de�nite, positive semide�nite, negative de�nite, and negative

semide�nite, respectively.

P (s) :

2
664 A B

C D

3
775 denotes that P (s) is a dynamic system with the following state space

representation in the continuous-time domain:

_x(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Dy(t) (1.1)

where u(t) and y(t) denote the input and output vectors, respectively, and x(t) denotes the

state vector.

Consider the interconnected system of two dynamic systems P (s) and C(s) shown in Fig-



11

Controller

Plant

z d

ue

P(s)

C(s)

(a) Lower LFT

Plant

u

d

Controller
C(s)

P(s)

e

z

(b) Upper LFT

Figure 1.1: Lower and upper linear linear fractional transformations (LFTs)

ure 1.1 (a). Suppose the plant P (s) is partitioned as follows:

P (s) =

2
664 P11(s) P12(s)

P21(s) P22(s)

3
775 (1.2)

where P T

22(s) has the same dimensions as C(s). The lower linear fractional transformation

(LFT), FL(P (s); C(s)), is de�ned as follows:

FL(P (s); C(s)) := P11(s) + P12(s)C(s)(I � P22(s)C(s))
�1P21(s) : (1.3)

Notice that FL(P (s); C(s)) is equal to the closed-loop transfer function from d to z in

Figure 1.1 (a).

Similarly, the upper LFT, FU (P (s); C(s)), is de�ned as follows:

FU (P (s); C(s)) := P22(s) + P21(s)C(s)(I � P11(s)C(s))
�1P12(s) : (1.4)

where P T

11(s) has the same dimensions as C(s). Notice that FU (P (s); C(s)) is equal to the

closed-loop transfer function from d to z in Figure 1.1 (b).

tr(X) denotes the trace function of a square matrix X, i.e. the sum of all diagonal entries

of X.
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dom f denotes the domain of a function f .

�i(X) denotes the i-th eigenvalue of a matrix X. �max(X) and �min(X) denote the maxi-

mum and minimum eigenvalues of X, respectively.
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Chapter 2

Preliminaries: Convex Optimization and

LMI-based H1 Controller Synthesis

Theories

2.1 Introduction

This chapter presents a brief review of convex optimization and LMI (linear matrix inequality)-

based H1 controller synthesis theories, which are essential to understanding the contribu-

tions of this dissertation. Advanced readers may skip this chapter. The materials presented

in this chapter are intended to give a preliminary background to understand the following

fundamental facts about H1 optimization problems:

1. H1 optimization problems of full-order controllers and state feedback controllers can
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be reparameterized as convex optimization problems. Therefore, the global optimum

can be numerically computed in quite an eÆcient and reliable manner.

2. When an additional constraint that contains the controller dynamics is imposed, how-

ever, the problem becomes a nonconvex optimization problem.

This dissertation focuses on an extension of LMI-based H1 optimization approaches to the

problems that cannot be parameterized as a convex optimization problem.

This chapter is organized as follows. Section 2.2 gives a brief review of convex optimization

and semide�nite programming (SDP). Section 2.3 reviews H1 optimization problems of

full-order controllers and state feedback controllers. The SDP formulation of each problem

is outlined. The proof of each formulation is presented to illustrate the limitations of LMI-

based approaches in applying to more general problems.

2.2 Convex Optimization and SDP Problems

2.2.1 Convex Optimization Problems

This section presents a brief overview of convex optimization. See e.g. [11, 86] or any

textbooks of mathematical programming for further details.

First, de�nitions of a convex set, a convex function, and a convex optimization problem are

given.

De�nition 1 (Convex set) A set C is convex if the line segment between any two points

in C lies in C, i.e. if for any x1,x2 2 C and any � with 0 � � � 1, the following holds:

�x1 + (1� �)x2 2 C : (2.1)
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De�nition 2 (Convex function) A function f : Rn
! R is convex if domf is a convex

set and if

f(�x+ (1� �)y) � �f(x) + (1� �)f(y) (2.2)

for any x,y 2 domf , and � with 0 � � � 1.

Geometrically, this inequality means that the line segment between (x; f(x)) and (y; f(y))

lies above the graph of f .

Similarly, a function f is called concave if �f is convex.

De�nition 3 (Convex optimization problem) The minimization problem of a convex

function over the optimization variable x 2 Rn subject to inequality constraints on convex

functions of x and equality constraints on aÆne functions of x is a convex optimization

problem, i.e.

min
x2Rn

f0(x)

subject to fi(x) � 0 (i = 1; � � � ;m)

aT
i
x = bi (i = 1; � � � ; p) (2.3)

where f0,� � �,fm are convex functions.

A fundamental property of convex optimization problems is that any local optimum is also

globally optimal. The local and global optima for general optimization problems are de�ned

as follows:

De�nition 4 (Local and global optima) Given a general optimization problem,

min
x2Rn

f0(x)

subject to fi(x) � 0 (i = 1; � � � ;m)

hi(x) = 0 (i = 1; � � � ; p) (2.4)
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x is locally optimal if x is feasible (i.e. x satis�es all the constraints) and

f0(x) = inf
z2Rn

ff0(z) j z is feasible; kz � xk � Rg (2.5)

for some R > 0. If Eq. (2.5) holds for any feasible z (i.e. R = 1), then x is globally

optimal.

Theorem 1 (Global optimum of convex optimization problem) Suppose x is locally

optimal for the convex optimization problem (2.3). Then, x is also globally optimal.

Consider an unconstrained minimization problem of a convex objective function, f0(x),

over a variable, x 2 Rn. When f0(x) is di�erentiable, Theorem 1 assures that the global

optimum, x�, can be found by simply computing the solution of rf(x�) = 0, where rf(x)

denotes the gradient of f at x 2 Rn, i.e. rf(x) :=
n

@f

@x1
; � � � ; @f

@xn

o
T

. Such a problem can

be solved in quite an eÆcient manner by iterative algorithms, which compute a sequence

of points x(0); x(1); � � � with f(x(k)) converging to the optimal point as k ! 1. A consid-

erable number of descent methods have been studied, which are guaranteed to generate a

decreasing sequence of f(x(k)) and to reach the global optimum. The global minimum of

convex functions can be always found by simply \going down" from any starting points,

unlike nonconvex optimization problems, which can have multiple local minimums.

This fundamental property of convex optimization problems is preserved in constrained

problems. The combination of the following two theorems shows that the m+ p constraints

in the problem (2.3) indeed form a convex set.

Theorem 2 (Sublevel set of a convex function) De�ne the �-sublevel set C� of a func-

tion f : Rn
! R by

C� = fx 2 dom f j f(x) � �g : (2.6)
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Sublevel sets of a convex function are convex.

Theorem 3 (Intersection of convex sets) The intersection of convex sets is also con-

vex, i.e. if sets Si (i = 1,� � �,n) are all convex, then their intersection \i2[1;n]Si is also

convex.

In the �eld of applied mathematics, numerous research e�orts have been devoted to devel-

oping eÆcient numerical algorithms to solve convex optimization problems. In particular,

linear programming (LP) and semide�nite programming (SDP), which can be regarded as

an extension of LP, have been the subject of intense research due to their obvious applica-

bility to numerous practical problems.

The following sections mainly focus on SDP problems. Section 2.2.2 presents the de�nition

of SDP problems and then brie
y discusses their important roles in control-related prob-

lems. Section 2.2.3 presents an overview of numerical algorithms to solve SDP problems.

2.2.2 Semide�nite Programming (SDP)

Consider the following problem of minimizing a linear function of a variable x 2 Rm subject

to a matrix inequality:

min
x2Rm

cTx

subject to F (x) � 0 (2.7)

where

F (x) := F0 +
mX
i=1

xiFi : (2.8)

c 2 Rm and m+ 1 symmetric matrices F0; � � � ; Fm 2 Rn�n are given. Notice that F (x) � 0

denotes that F (x) is symmetric and negative semide�nite (see Section 1.4).



18

De�nition 5 (SDPs and LMIs) The inequality F (x) � 0 is a linear matrix inequality

(LMI) and the problem (2.7) is a semide�nite program (SDP).

Since F (x) is symmetric, the necessary and suÆcient condition for F (x) to be negative

semide�nite is that the largest eigenvalue of F (x) is smaller than or equal to zero. From

the fact that the largest eigenvalue of a symmetric matrix X 2 Rn�n is a convex function of

X (see [11] for the proof), one can easily see that the constraint, F (x) � 0, forms a convex

set. LMI constraints are nonlinear and nonsmooth, but convex. Therefore, SDP problems

are convex optimization problems.

Many control-related optimization problems can be written in the SDP form. For example,

consider the following problem:

minimize 


over 
 2 R; X 2 Rn�n

subject to

2
66666664

ATX +XA XB CT

BTX �
I DT

C D �
I

3
77777775

� 0 (2.9)

X � 0

where A,B,C, and D are constant matrices with appropriate dimensions. The optimal so-

lution 
� of the above problem is equal to the H1 norm of the continuous system given in

the state space representation, P (s) :

2
664 A B

C D

3
775 (see Lemma 1 in Section 2.3.2). The

above problem belongs to the class of SDP; the inequality constraints can be rewritten in

the form (2.7) with the optimization variable, x 2 R0:5n(n+1)+1, consisting of each entry of

X 2 Rn�n (notice that X is constrained to be symmetric) and 
 2 R.

It implies that the H1 norm of a linear system, P (s), can be computed by solving an SDP
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problem. Note that this is merely an illustrative example of SDP problems appearing in

control problems. In practice, there are more eÆcient ways to compute the H1 norm of a

linear system than this approach [9, 12].

The SDP framework has recently attracted great attention in various �elds of optimization

for the following reasons. First, and most importantly, SDP problems can be solved very

eÆciently, both in theory and in practice, by using well-developed interior-point methods.

Secondly, the SDP framework o�ers a uni�ed approach to formulate many convex optimiza-

tion problems, such as LPs and (convex) quadratically constrained quadratic programs (see

[110] for more problems that can be formulated in SDP form).

2.2.3 Algorithms and Softwares for Solving SDPs

This section gives an overview of algorithms to solve SDPs. For further details, see [110,

10, 22] and the references therein.

SDP problems can be regarded as extensions of LPs. LPs are generally formulated as

follows:

De�nition 6 (LP) The problem of minimizing a linear function of a variable x 2 Rm

subject to a componentwise vector inequality is called linear programming (LP):

min
x2Rm

cTx

subject to Ax+ b � 0 (2.10)

where A 2 Rn�m and b 2 Rn. The inequality denotes the componentwise inequality.

Extensive research has been devoted for decades to develop algorithms to solve general

LPs in polynomial time (with respect to the problem size and the required accuracy).
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The simplex method, which is still considered the fastest algorithm in practice for solving

LP problems of small or medium size, is a non-polynomial time algorithm in theory, i.e.

the e�ort required to solve an LP problem to a given accuracy grows exponentially in

worst cases as the problems size becomes larger. The ellipsoid method proposed in the

late 1970s by Yudin and Nemirovski [123] and Shor [96] claimed a polynomial worst-case

computational complexity. In many practical applications, however, it is much slower than

simplex methods. In 1984, Karmarkar introduced the interior-point method for LPs [64],

which is guaranteed to solve LPs in polynomial time and, in contrast to the ellipsoid method,

is also very e�ective in practice. Nesterov and Nemirovski [79] showed in the late-1980s that

the interior-point method for LPs can be, in principle, generalized to all convex optimization

problems. Generalization of interior-point methods from LPs to SDPs was discussed by

Alizadeh [1] and Kamath and Karmarkar [61]. Although SDP problems are much more

general than LP problems, interior-point methods can be readily applied, and thus are not

much harder to solve.

There has been a 
urry of papers on development of more eÆcient interior-point methods to

solve SDPs. Several variations of interior-point methods have been implemented on publicly

available software. Throughout this dissertation, the following software will be used to solve

SDPs.

� LMI Control Toolbox developed by Gahinet et al. [34]. It is a commercial software

package for use on MATLAB. The algorithm is based on Nesterov and Nemirovski's

projective algorithm [77].

� SP developed by Vandenberghe and Boyd [109] and its MATLAB interface LMI-

TOOL developed by El Ghaoui et al. [36]. The algorithm is based on Nesterov and
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Todd's primal-dual potential reduction method [80].

A list of software packages available for SDPs can be found in [22].

2.3 LMI-based H1 Controller Synthesis Algorithms

2.3.1 Problem Statement

The H1-optimal controller synthesis problem is formulated as follows. Suppose the closed-

loop system is given as shown in Figure 1.1 (a) where the plant model, P (s), and the con-

troller, C(s), are assumed to be real, rational and proper continuous-time transfer function

matrices. Suppose that the plant model, P (s), can be written in the following continuous-

time state space representation:

_x(t) = Ax(t) +B1d(t) +B2u(t)

z(t) = C1x(t) +D11d(t) +D12u(t) (2.11)

e(t) = C2x(t) +D21d(t) +D22u(t) :

The plant dimensions are summarized by A 2 Rn�n, D11 2 Rp1�m1 , and D22 2 Rp2�m2 .

The following assumptions are imposed on the plant parameters.

1. (A; B2; C2) is stabilizable and detectable.

2. D22 = 0p2�m2
.

Notice that neither of the assumptions is restrictive in practice; the �rst assumption is

necessary and suÆcient to allow for plant stabilization by dynamic output feedback. The

second assumption incurs no loss of generality while it considerably simpli�es calculations
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for H1 optimization [37].

Suppose that the controller dynamics, C(s), is given in the following state space represen-

tation:

_xK(t) = AcxK(t) +Bce(t)

u(t) = CcxK(t) +Dce(t) (2.12)

where Ac 2 Rk�k, and the dimensions of Bc, Cc, and Dc are compatible with P (s) given in

Eq. (2.11).

The objective of the H1-optimal controller synthesis problem is to �nd a controller C(s)

(i.e. Ac, Bc, Cc, and Dc) such that: 1) the closed-loop system is internally stable, and

2) the H1 norm of FL(P (s); C(s)), i.e. the closed-loop transfer function from d to z in

Figure 1.1(a), is minimized.

The discrete-time version of the H1-optimal controller synthesis problem is de�ned in an

analogous way.

It is often more convenient to look for a controller, C(s), that achieves the closed-loop

H1 norm kFL(P (s); C(s))k1 less than a given constant level 
 > 0, rather than one that

minimizes kFL(P (s); C(s))k1. The controller, C(s), that 1) internally stabilizes the closed-

loop system, and 2) achieves kFL(P (s); C(s))k1 < 
 for a given 
 > 0, is called the H1


-suboptimal controller.

The conventional full-orderH1 (sub-)optimization algorithm, which will be outlined in Sec-

tion 2.3.3, assumes that: 1) the controller C(s) is full-order, i.e. the order of the controller

is the same as that of the plant model P (s) (k = n), and 2) every entry of (Ac, Bc, Cc, Dc)

is freely tunable.

Numerous theoretical and application works on H1 control have been reported since the
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1980s. To understand motivation for the introduction of H1 optimization to the design

of controllers, readers are referred to [125, 41] and many others. The robustness of the

closed-loop system against modeling uncertainties or external disturbances is clearly one

of the most important motivations. In this dissertation, however, the H1 optimization is

mainly used as a tool to explicitly design frequency responses of the closed-loop system. Al-

though this approach does not explicitly deal with the robustness of the closed-loop system,

it is simple and quite useful for the design of practical controllers, as shown in application

examples presented in the later chapters. It should be emphasized that the H1 controller

synthesis is merely a mathematical minimization problem, and that the robust controller

design is only one of its applications.

2.3.2 LMI-based H1 State Feedback Controller Synthesis Algorithm

The following two special cases of H1 optimization problems can be formulated as SDP

problems: 1) the state feedback controller synthesis case and 2) the full-order controller syn-

thesis case. Both problems were solved by the ARE-based approaches in the late 1980s by

Peterson [87] (state feedback and full-information H1 optimal control) and Doyle et al. [18]

(full-order H1 optimal control), respectively. In the mid-1990s, Gahinet and Apkarian

[33] and Iwasaki and Skelton [60] showed that both problems can be reformulated as SDP

problems, and thus their numerical solutions can be quite eÆciently computed, although

an analytical or closed-form solution cannot be o�ered.

This section presents a brief review of the LMI formulation of the H1 optimization prob-

lem of state feedback controllers. The materials presented in the following two sections are

crucial to understanding the diÆculties of applying LMI-based approaches to more general
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problems than the above two problems. Although the state feedback controller synthesis

problem is not practical in most applications, its LMI formulation is much more straight-

forward to understand than that of the full-order controller synthesis case. Furthermore,

the H1 optimization algorithm of Luenberger state observers with static weightings, which

will be presented in Section 5.2, is a direct extension of this formulation.

The problem is formulated as follows. All state variables of the plant, P (s), given in

Eq. (2.11) are assumed available, i.e. C2 = In and D21 = 0p2�m1
. The problem is to �nd

the H1-optimal state feedback gain matrix, K 2 Rm2�n, such that kFL(P (s);K)k1 is

minimized.

The following lemma is crucial to interpret an H1 norm constraint as an LMI constraint.

Lemma 1 (Bounded Real Lemma for Continuous-time Systems)

Consider a continuous-time transfer function, T (s), of the (not necessarily minimal) real-

ization T (s) = D + C(sI � A)�1B. Then, kT (s)k1 < 
 for 
 > 0 and A is asymptotically

stable (i.e. Re(�i(A)) < 0) if and only if there exists a symmetric positive de�nite matrix,

X, that satis�es the following LMI:2
66666664

ATX +XA XB CT

BTX �
I DT

C D �
I

3
77777775
� 0 : (2.13)

See e.g. [126] for the proof. By directly applying Lemma 1 to the closed-loop system,

FL(P (s);K), it can be easily observed that the H1-optimal solution, K
�, can be computed

by solving the following SDP problem.

Lemma 2 (H1-optimal State Feedback Controller Synthesis)

The continuous-time H1-optimal state feedback gain matrix, K�, can be obtained by K� =
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FX�1, where (F; X) is the optimal solution set of the following SDP problem:

minimize 


over X 2 Rn�n; F 2 Rm2�n and 
 2 R (2.14)

subject to

2
66666664

AX +XAT +B2F + F TBT

2 B1 (C1X +D12F )
T

BT

1 �
I DT

11

C1X +D12F D11 �
I

3
77777775

� 0

X � 0 :

Proof: By combining the plant model (2.11), and the state feedback law, u(t) = Kx(t),

the closed-loop system dynamics is given as follows:

_x(t) = (A+B2K)x(t) +B1d(t)

e(t) = (C1 +D12K)x(t) +D11d(t) : (2.15)

Notice that the existence of X � 0 satisfying Eq. (2.13) is equivalent to that of X � 0

satisfying: 2
66666664

AX +XAT B XCT

BT
�
I DT

CX D �
I

3
77777775
� 0 : (2.16)

Therefore, the H1 norm of the closed-loop system (2.15) is less than 
 > 0 if and only if

there exists a positive de�nite symmetric matrix, X 2 Rn�n, such that2
66666664

(A+B2K)X +X(A+B2K)T B1 X(C1 +D12K)T

BT

1 �
I DT

11

(C1 +D12K)X D11 �
I

3
77777775
� 0 : (2.17)

Although there are bilinear terms of variables K and X in the constraint (2.17), it can be

equivalently transformed into the �rst LMI constraint in (2.14) by simply introducing the
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new variable F := KX 2 Rm2�n. Since the problem (2.14) is an SDP problem, it has a

unique optimal solution. Also notice that X is always invertible, since it is restricted to be

strictly positive de�nite. Therefore, the H1 optimal state feedback gain matrix, K�, can

be uniquely obtained. 2

The discrete-time version of this problem can be solved in an analogous way. The Bounded

Real Lemma for discrete-time systems is given as follows.

Lemma 3 (Bounded Real Lemma for Discrete-time Systems)

Consider a discrete-time transfer function, T (s), of the (not necessarily minimal) realization

T (s) = D + C(zI � A)�1B. Then, kT (z)k1 < 
 for 
 > 0 and A is asymptotically stable

in the discrete-time sense (i.e. j�i(A)j < 1) if and only if there exists a symmetric positive

de�nite matrix, X, that satis�es the following LMI:

2
664 AT CT

BT DT

3
775
2
664 X 0

0 I

3
775
2
664 A B

C D

3
775�

2
664 X 0

0 
I

3
775 � 0 : (2.18)

The analogous SDP problem for �nding the H1-optimal state feedback controller for

discrete-time systems can be derived in the same way as shown in Lemma 2.

2.3.3 LMI-based H1 Full-order Controller Synthesis Algorithm

This section considers the more general case where the controller is a dynamic output feed-

back controller whose state space representation is given in the form (2.12). The problem

is to �nd (Ac; Bc; Cc;Dc) such that the closed-loop H1 norm, kFL(P (s); C(s))k1, is mini-

mized, where P (s) is a given plant model in the form (2.11).
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The standard LMI-based H1 full-order controller synthesis algorithm is based on the fol-

lowing result by Gahinet and Apkarian [33]:

Theorem 4 (Solvability of Continuous-time H1 Controller Synthesis Problems)

There exists a dynamic controller, C(s), of order k such that kFL(PK(s); C(s))k1 < 
 if

and only if there exist two symmetric matrices X 2 Rn�n and Y 2 Rn�n such that

N
T

1

2
66666664

AX +XAT XCT

1 B1

C1X �
I D11

BT

1 DT

11 �
I

3
77777775
N1 � 0 (2.19)

N
T

2

2
66666664

ATY + Y A Y B1 CT

1

BT

1 Y �
I DT

11

C1 D11 �
I

3
77777775
N2 � 0 (2.20)

2
664 X I

I Y

3
775 � 0 (2.21)

rank (XY � I) � k (2.22)

where N1 = diag fN12; Ig ;N2 = diag fN21; Ig. N12 and N21 are bases of the null space of�
BT

2 DT

12

�
and

�
C2 D21

�
, respectively.

First, notice that in the full-order controller synthesis case, i.e. k � n, the constraint (2.22)

is trivially satis�ed for any X and Y . Therefore, the problem for �nding X and Y that

satisfy the constraints (2.19)�(2.22) becomes an SDP problem.

The complete proof of Theorem 4 can be found in [33]. However, in order to help read-

ers understand the limitation of the LMI-based approach for the application to the more

general class of H1 optimization problems, this section presents an outline of the proof of
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Theorem 4.

First, recall the following lemmas as well as the Bounded Real Lemma (Lemma 1), which

play a central role in the proof.

Lemma 4 (Elimination Lemma) Given a symmetric matrix 	 2 Rm�m and two ma-

trices P;Q of column dimension m, consider the problem to �nd a matrix � of compatible

dimensions such that

	+ P T�TQ+QT�P � 0 : (2.23)

Denote by WP and WQ any matrices whose columns form bases of the null space of P and

Q, respectively. Then, the problem (2.23) is solvable for � if and only if

8>><
>>:

W T

P
	WP � 0

W T

Q
	WQ � 0 :

(2.24)

Lemma 5 (Schur Complement) The block matrix

2
664 P M

MT Q

3
775 is negative de�nite if

and only if 8>><
>>:

Q� 0

P �MQ�1MT
� 0 :

(2.25)

P �MQ�1MT is called the Schur complement of Q.

Overview of Proof of Theorem 4: From the plant model (2.11) and the controller (2.12),

a (not necessarily minimal) state space representation of the closed-loop system, FL(P (s); C(s)),

is given as follows:

_xcl(t) = Aclxcl(t) +Bclw(t)

z(t) = Cclxcl(t) +Dclw(t) (2.26)
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where xcl(t) = [x(t)T xK(t)
T ]T and

Acl :=

2
664 A+B2DcC2 B2Cc

BcC2 Ac

3
775 ; Bcl :=

2
664 B1 +B2DcD21

BcD21

3
775 ;

Ccl :=

2
664 C1 +D12DcC2

D12Cc

3
775 ; Dcl := D11 +D12DcD21:

(2.27)

The closed-loop system matrices can be rewritten as

Acl = A0+B�D21; Bcl = B0+B�C; Ccl = C0+D12�C; Dcl = D11+D12�D21; (2.28)

by using the shorthands:

A0 :=

2
664 A 0

0 0k

3
775 ; B0 :=

2
664 B1

0

3
775 ; C0 :=

�
C1 0

�
;

B :=

2
664 0 B2

Ik 0

3
775 ; C :=

2
664 0 Ik

C2 0

3
775 ; D12 :=

�
0 D12

�
; D21 =

2
664 0

D21

3
775 ;
(2.29)

and

� =

2
664 Ac Bc

Cc Dc

3
775 : (2.30)

From the Bounded Real Lemma (Lemma 1), the controller (2.12) is an H1 
-optimal

controller if and only if there exists a symmetric positive de�nite matrix, Xcl 2 R(n+k)�(n+k),

that satis�es: 2
66666664

AT

cl
Xcl +XclAcl XclBcl CT

cl

BT

cl
Xcl �
I DT

cl

Ccl Dcl �
I

3
77777775
� 0 : (2.31)

By using the expression (2.28) of Acl; Bcl; Ccl; Dcl, the above relation can be rewritten as:

	Xcl
+QT�T

PXcl
+ PT

Xcl
�Q � 0 (2.32)
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where

	Xcl
: =

2
66666664

AT

0Xcl +XclA0 XclB0 CT

0

BT

0 Xcl �
I DT

11

C0 D11 �
I

3
77777775
;

Q : =

�
C; D21; 0(k+p2)�p1

�
; PXcl

:=

�
B
TXcl; 0; D

T

12

�
: (2.33)

Therefore, the set of 
-suboptimal controllers of order k is nonempty if and only if Eq. (2.32)

holds for some � 2 R(k+m2)�(k+p2) and Xcl � 0. Notice that there are bilinear terms in the

constraint (2.32) with respect to � and Xcl. The Elimination Lemma (Lemma 4) can now

be invoked to equivalently transform the solvability condition (2.32) into a form depending

only on Xcl and plant parameters. Let WPXcl
andWQ denote matrices whose columns form

bases of the null space of PXcl
and Q, respectively. Then, by Lemma 4, the constraint (2.32)

holds for some � if and only if

W T

PXcl
	Xcl

WPXcl
� 0 ; W T

Q
	Xcl

W T

Q
� 0 : (2.34)

Furthermore, it is straightforward to see that the existence of Xcl satisfying (2.34) is equiv-

alent to that of Xcl satisfying

W T

P
�Xcl

WP � 0 ; W T

Q
	Xcl

W T

Q
� 0 (2.35)

where

�Xcl
:=

2
66666664

AT

0X
�1
cl

+X�1
cl
A0 B0 X�1

cl
CT

0

BT

0 �
I DT

11

C0X
�1
cl

D11 �
I

3
77777775
; (2.36)

and WP is a matrix whose columns form bases of the null space of P. The constraints

in (2.35) are still not convex because they involve both Xcl and its inverse. Fortunately,
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they can be further reduced to a pair of Ricatti inequalities of lower dimension that are

convex constraints. First, partition Xcl and X�1
cl

as follows:

Xcl :=

2
664 Y N

NT
�

3
775 ; X�1

cl
:=

2
664 X M

MT
�

3
775 ; (2.37)

where X;Y 2 Rn�n and M;N 2 Rn�k.

By using this partition, the condition W T

P
�Xcl

WP � 0 is equivalently reduced to the con-

straint (2.19) (See [33] for further details of this transformation). Similarly, the condition

W T

Q
	Xcl

W T

Q
� 0 is reduced to the constraint (2.20). 2

Theorem 4 only addresses the existence of a solution and does not include the computation

of the optimal controller. The system matrices of the H1 
-suboptimal controller, �, can

be obtained as follows. Once X and Y satisfying (2.19)�(2.22) are found, Xcl can be recon-

structed from Eq. (2.37) by using the singular value decomposition (SVD) (see [33]). Then,

� can be computed by solving (2.32). Notice that when Xcl is given, Eq. (2.32) becomes an

LMI with respect to �, and thus the problem of �nding � is a convex optimization problem.

In practice, the explicit and numerically more reliable formulas for computing the optimal

controller, �, are available (Gahinet [32]).

Theorem 4 states that: 1) the controller that achieves the minimum kFL(P (s); C(s)k1 is,

at most, the same order as the plant P (s), and 2) the H1-optimal controller of the same

order as the plant, P (s), can be computed by solving convex optimization problems. In the

case where the order of the controller is restricted to less than the plant order, however,

the problem becomes a nonconvex optimization problem due to the rank constraint (2.22).

Furthermore, the SDP formulation of the H1 optimization problem clari�es the diÆculties

of imposing an additional constraint on the controller system matrices, because the SDP
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formulation (2.19)�(2.21) no longer contains the set of controller system matrices, �.

This dissertation focuses on solving the problems that cannot be globally solved by convex

optimization. Chapter 3 presents an algorithm for solving the H1 optimization problem of

�xed-structure controllers via the reduced-order H1-optimal controller synthesis. In Chap-

ter 4, the BMI formulation is discussed to solve a more general class of H1 optimization

problems that cannot be parameterized as SDP problems.

The result presented in Theorem 4 for continuous-time cases can be easily transposed to

the discrete-time context and leads to the analogous result shown in the following theorem.

Theorem 5 (Solvability of Discrete-time H1 Controller Synthesis Problems)

There exists a dynamic discrete-time controller, C(z), of order k such that

kFL(PK(z); C(z))k1 < 
 if and only if there exist two symmetric matrices X 2 Rn�n

and Y 2 Rn�n such that

N
T

1

2
66666664

AXAT
�X AXCT

1 B1

C1XAT
�
I + C1XCT

1 D11

BT

1 DT

11 �
I

3
77777775
N1 � 0 (2.38)

N
T

2

2
66666664

ATY A� Y ATY B1 CT

1

BT

1 Y A �
I +BT

1 Y B1 DT

11

C1 D11 �
I

3
77777775
N2 � 0 (2.39)

2
664 X I

I Y

3
775 � 0 (2.40)

rank (XY � I) � k (2.41)

where N1 = diag fN12; Ig ;N2 = diag fN21; Ig. N12 and N21 are bases of the null space of
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�
BT

2 DT

12

�
and

�
C2 D21

�
, respectively.

Finally, it should be noted that the LMI-based approach to the full-order H1 controller

synthesis problem is essentially analogous to the classical ARE-based approach proposed

by Doyle et al. [18]. The ARE-based approach is often computationally more eÆcient for

\regular" H1 optimization problems (i.e. the case where the plant model (2.11) satis�es the

following regularity assumptions: 1) D12 has full column rank and D21 has full row rank,

and 2) P12(s) and P21(s) have no invariant zero on the imaginary axis). The LMI-based

approach has, however, the following important advantages: 1) it does not require that

the plant model satis�es the regularity conditions, and 2) it is easier to see the possibility

of extending the algorithm to more general problems, such as the reduced-order controller

synthesis. The latter is a strong motivation for the works presented in the following chapters.

2.4 Summary

This chapter has presented a brief review of convex optimization and the LMI-based H1

controller synthesis algorithms, which are essential to understanding the contributions of

this dissertation. The LMI formulation of the H1 optimization problem presented by

Gahinet and Apkarian [33] and Iwasaki and Skelton [60] clari�es the following fundamental

properties of the H1 optimization: 1) H1 optimization problems of full-order controllers

and state feedback controllers can be reparameterized as convex optimization problems;

therefore, the global optimum can be numerically computed in an eÆcient and reliable

manner by using well-developed interior-point methods, and 2) when an additional con-



34

straint is imposed on the controller, the problem becomes nonconvex, and the LMI-based

approach cannot be applied. It is simply because both formulations of the state feedback

controller synthesis problem (Lemma 2) and the full-order controller synthesis problem

(Theorem 4) no longer include the controller parameters, since they are eliminated in the

process of transforming the problem into an SDP problem.

The next chapter will consider the case where the controller has a certain structure, and

only its parameters are allowed to be tuned.
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Chapter 3

H1 and Scaled-H1 Optimization of Fixed

Structure Controllers

3.1 Introduction

As brie
y reviewed in the previous chapter, the LMI (Linear Matrix Inequality)-based H1

controller synthesis theory [33, 60] guarantees that if the controller is allowed to have the

same order as the plant and every system matrix of the controller is freely tunable, then

the H1 optimization problem can be solved by convex optimization and thus the global

minimum can be always found. This chapter considers the case where the controller has a

�xed structure and only its parameters are tunable.

The objective of the H1 optimization problem considered in this chapter is to �nd a linear

controller, C(s), whose dynamics has a prescribed �xed structure denoted by C, such that
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the following H1 norm of the closed-loop transfer function is minimized:

min
C(s)2C

kFL(P (s); C(s))k1 (3.1)

where P (s) denotes the given plant model. The closed-loop con�guration is shown in Fig-

ure 1.1 (a).

Applications of the present optimization problem include tuning of SISO (Single-Input

Single-Output) PID (Proportional plus Integral plus Derivative) controller gains. Despite

of technical advances in the design and implementation of sophisticated controllers, most

of industrial controllers still adopt simple structures such as PID control. Application of

the H1 optimization theory to tuning of parameters of such �xed structure controllers is,

therefore, of interest and of practical importance. The conventional H1 optimization typi-

cally gives a controller of high order | at least as high as and quite often much higher than

the plant model due to dynamic performance weightings augmented in the optimization

process to achieve the desired performance. To implement such a controller, one must re-

design the entire controller structure, which often requires considerable e�ort and cost. For

example, Section 3.5 considers the tuning problem of a PID controller for head positioning

control of a magnetic hard disk drive (HDD). In this problem, a PID controller was already

implemented on a microprocessor embedded in a commercial HDD system. Although it

is not desirable to change the whole controller structure due to time and cost limitations,

it is easy to modify the controller parameters (P-gain, I-gain, and D-gain). This chapter

presents an intuitive and eÆcient approach to tune the controller parameters by using H1

optimization such that the control performance is further improved.

It should be noted, however, that H1 optimization is not the only tuning methodology

for PID controllers. Numerous methods for tuning of PID gains have been reported in the
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literature over years (see, e.g. [5]) and any fair comparison among those methods is likely

to be inconclusive, since their derivations are usually based on di�erent criteria and design

philosophy. The H1 optimization theory has, however, enjoyed a great attention over years

in the �eld of control and its applicability to practical problems has been reported. Es-

pecially when the robustness of the closed-loop system is one of the main concerns of the

designer, H1 optimization is quite a useful tool. Our subsequent discussion focuses on the

algorithm to solve the given H1 controller optimization problem.

As discussed in Section 2.3.3, a critical limitation of the LMI-based H1 controller synthe-

sis algorithm is that it allows no additional constraint to be imposed on the problem; the

closed-loop H1 norm constraint must be the only constraint imposed on the problem in

order for it to be globally solvable by convex optimization. Therefore, in the case where the

controller has a �xed structure and only its parameters are tunable, the problem cannot be

reparameterized as a convex optimization problem.

The algorithm proposed in this chapter is outlined as follows. First, the closed-loop sys-

tem model is reconstructed by using linear fractional transformations (LFTs) presented by

Nett et al. [81] such that all tunable controller parameters are \extracted" as a full constant

block. Then, the �xed-structure controller optimization problem can be seen as an H1

synthesis problem of static output feedback control, which does not impose any constraints

on the controller structure except for the order [8, 25].

The H1 synthesis problem of static output feedback controllers is still a hard problem to

solve. Unlike the full-order controller synthesis case, the H1 synthesis problem of static

(or more generally, reduced-order) output feedback controllers cannot be reparameterized

as a convex optimization problem. The reduced-order H1 synthesis problem has, however,

received considerable attention in recent years. Several algorithms have been proposed to
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solve this problem in an eÆcient manner (see Section 3.2). In this chapter, the cone com-

plementarity linearization algorithm proposed by El Ghaoui et al. [23] is employed to solve

this problem. Although the cone complementarity linearization algorithm is a local search

algorithm, and thus there is no guarantee that it �nds the global minimum, in most prac-

tical applications it performs excellent as shown in [23].

The proposed approach can be also applied to the scaled-H1 optimization problem of �xed-

structure controllers in a straightforward manner. The scaled-H1 optimization problem is

strongly related to the �-synthesis problem, i.e. the controller synthesis problem that guar-

antees the robust stability and performance for a linear time-invariant (LTI) plant subject

to norm-bounded structured uncertainties. Since the general �-synthesis problem is quite

diÆcult to solve, the scaled-H1 optimization problem with a constant scaling matrix is

often used as its reasonable \approximation." Since the pioneering works of Doyle [17] and

Safonov [91], the practical importance of the scaled-H1 optimization problem has been

recognized.

The main focus of this chapter is on demonstrating the practical application ofH1 optimiza-

tion to the tuning of �xed-structure controllers. The following three practical application

examples are presented to show the e�ectiveness of the proposed approach.

1. The tuning of a SISO PID controller for head positioning of a magnetic hard disk drive

(HDD). The optimal PID controller is obtained as a redesigned version of a second-

order compensator tuned manually by an expert servo engineer. The e�ectiveness of

the proposed re-tuning method is demonstrated by simulation and experimentation.

2. The tuning of an observer feedback controller for head positioning of an HDD. TheH1

optimization is carried out in the discrete-time domain due to the discrete-time nature
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of the controller structure. Unlike the PID controller case, the optimization problem

of parameters of this controller structure cannot be transformed into a static output

feedback controller synthesis problem. By using an iterative approach and alternately

optimizing a part of the controller parameters, however, a locally optimum solution

can be obtained.

3. The tuning of a multi-input single-output (MISO) PID controller design for the lat-

eral control of an automated heavy-duty vehicle (HDV). The controller is tuned such

that it shows suÆcient robust performance against model uncertainties or parametric

perturbations without employing complicated controller structures. Simulations have

been conducted to show the performance of the designed controller.

The remainder of this chapter is organized as follows. First, previous works on �xed-

structure and reduced-order H1 optimization problems are brie
y reviewed in Section 3.2.

The H1 optimization algorithm of �xed-structure controllers is proposed in Section 3.3.

The scaled-H1 optimization of static output feedback controllers is discussed in Section 3.4.

In Sections 3.5� 3.7, three application examples of the proposed �xed-structure H1 con-

troller optimization algorithm are presented. A brief summary of this chapter is given in

Section 3.8.

Much of what is presented in this chapter can be found in Ibaraki and Tomizuka [54] (in-

cluding the application example presented in Section 3.5) and Niu et al. [82] (including the

application example presented in Section 3.6).
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3.2 Previous Works on Fixed-structure and Reduced-order

H1 Optimization

A number of research e�orts on H1 optimization of a PID controller have been reported

in the literature. Since the standard full-order H1 controller synthesis algorithm cannot

be applied to this problem, several approaches have been proposed to simplify the problem

by imposing certain assumptions on the cost function or the controller structure, which

makes it diÆcult to apply the algorithm to more general problems (Grassi and Tsakalis [40]

and Malan et al. [71]). The application of nondeterministic approaches such as the genetic

algorithm has been also reported (Kawabe and Tagami [65]).

As will be shown in Chapter 4, the H1 optimization problem of general �xed-structure

controllers can be formulated as a bilinear matrix inequality (BMI) problem in a straight-

forward manner. Several variations of local search algrorithm, which can be applied to

general BMI problems in principle, have been proposed to solve this problem. The condi-

tional gradient search approaches (e.g. Wenk and Knapp [116] and Takahashi et al. [103])

and successive linearization approaches (e.g. Collins et al. [19]) showed satisfactory search

performance in practical applications. More details about the algorithms to solve general

BMI problems will be discussed in Chapter 4.

For problems that can be formulated as standard H1 optimization problems (\standard"

in the sense that the cost function is given by a single H1 norm function), the approach

presented in this chapter has the following advantages; �rst, it is a natural extension of the

standard full-order H1 controller synthesis algorithm and only requires iteration of convex

optimization. Since convex optimization problems can be solved in a polynomial time by

using well-developed techniques in SDP (See Section 2.2.3), the proposed approach is sub-
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stantially faster than any approaches based on nonconvex search algorithms. Furthermore,

the proposed approach is not restricted to the tuning of PID controllers. It can be applied to

the tuning of a large class of �xed-structure linear controllers that satisfy certain structural

conditions, which will be given later.

The proposed algorithm solves the H1 optimization problem of �xed structure controllers

via the reduced-order H1 controller synthesis. The reduced-order H1 controller synthesis

problem has received considerable attention since the LMI-based approach to H1 opti-

mization problems was introduced. Although the reduced-order H1 controller optimiza-

tion problem cannot be repameterized as a convex optimization problem, and thus it is

hard to solve globally, several local search algorithms have been proposed for this problem.

For example, consider a synthesis problem of the H1 (sub-)optimal controller of the min-

imum order for a continuous-time plant. As discussed in Section 2.3.3, this problem can

be rewritten as a minimization problem of rank(RS � I) over R and S under LMI con-

straints (2.19)�(2.21). Therefore, the synthesis problem of the H1 
-suboptimal controller

of the minimum order can be formulated as follows:

min
R;S

�max(RS) subject to (2.19)�(2.21) : (3.2)

The H1 
-suboptimal controller of zeroth order exists if and only if the optimal value of

�max(RS) is one. Notice that the constraint (2.21) assures that all eigenvalues of RS are

larger than or equal to one (it can be proved by using Lemma 5). The above problem is

not a convex optimization problem, since the objective function �max(RS) is not a convex

function of R and S. It can be easily seen, however, that if either of R and S is �xed, then

the problem becomes a convex optimization problem over the other variable. By alternately

�xing R and S at each step, one can reduce the objective value, �max(RS), by iteration
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of convex optimization. This is the basic idea of the simplest coordinate descent methods

(e.g. Iwasaki and Rotea [59, 90]). Notice that this approach is a local search algorithm

and, therefore, is not always guaranteed to �nd the global minimum. In fact, it is not even

guaranteed to converge to a local minimum, due to the non-smoothness of the objective

function. Several local search algorithms proposed in the literature claimed better search

performance, e.g. the alternating projection method by Grigoriadis and Skelton [42], and

the min-max algorithm by Geromel et al. [35] and the descent methods using the analytic

center by Iwasaki and Rotea [59, 90]. This chapter employs the cone complementarity lin-

earization algorithm proposed by El Ghaoui et al. [23].

Finally, note that any global search algorithms for BMI problems, which will be discussed in

Chapter 4, can be applied to this problem. For example, Yamada and Hara [121] presented

a global search algorithm speci�ed to reduced-order H1 controller synthesis problems and

scaled-H1 optimization problems. Any global search algorithms are, however, computa-

tionally too expensive in practical applications.

3.3 H1 Optimization of Fixed-structure Controllers

3.3.1 Transformation into a Static Feedback Controller Synthesis Prob-

lem

Nett et al. [81] showed that a large class of �xed structure controller optimization problems

could be equivalently transformed into a synthesis problem of the optimal static output

feedback controller. By using this transformation, the constraints on the controller struc-

ture implicitly imposed in the problem (3.1) can be avoided except for the constraint on the
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controller order. This section presents the transformation procedure for the H1 optimiza-

tion problem of �xed-structure controllers (3.1), although the same transformation can be

also applied to scaled-H1 optimization problems.

To illustrate the procedure, consider a tuning problem of the following SISO PID controller

with approximate derivative and integral actions:

C(s) = kp + ki
1

s+ �i
+ kd

s

�ds+ 1
(3.3)

where kp, ki, and kd are constant parameters that are independently tunable. �i and �d are

small constants for the approximate integral and derivative actions, respectively, and they

are assumed to be �xed. A state space representation of the controller dynamics (3.3) is

given by:

2
664 _xi(t)

_xd(t)

3
775 =

2
664 ��i 0

0 �
1
�d

3
775
2
664 xi(t)

xd(t)

3
775+

2
664 1

1
�d

3
775 e(t)

u(t) =

�
ki kd(�

1
�d
)

� 2664 xi(t)

xd(t)

3
775+

�
kp +

kd

�d

�
e(t) : (3.4)

Suppose that the plant P (s) is given in the form (2.11) and satis�es the assumptions given

in Section 2.3.1. The optimization objective is to tune (kp, ki, kd) in Eq. (3.3) such that

the closed-loop H1 norm, kFL(P (s); C(s))k1, is minimized.

Notice that the controller state variables, xi(s) and xd(s), can be written in the s-domain

as follows:

xi(s) =
1

s+ �i
e(s); xd(s) =

1

1 + �ds
e(s) : (3.5)
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Therefore, the control law (3.3) can be written as:

u(t) =

�
kp ki kd

�
2
66666664

e(t)

xi(t)

�
1
�d
xd(t) +

1
�d
e(t)

3
77777775
: (3.6)

Then, reconstruct the extended plant PK(s) as follows:2
66666664

_x(t)

_xi(t)

_xd(t)

3
77777775

=

2
66666664

A 0 0

C2 ��i 0

1
�d
C2 0 �

1
�d

3
77777775

2
66666664

x(t)

xi(t)

xd(t)

3
77777775
+

2
66666664

B1

D21

1
�d
D21

3
77777775
d(t) +

2
66666664

B2

0

0

3
77777775
u(t)

z(t) =

�
C1 0 0

�
2
66666664

x(t)

xi(t)

xd(t)

3
77777775
+D11d(t) +D12u(t) (3.7)

w(t) =

2
66666664

C2 0 0

0 1 0

1
�d
C2 0 �

1
�d

3
77777775

2
66666664

x(t)

xi(t)

xd(t)

3
77777775
+

2
66666664

D21

0

1
�d
D21

3
77777775
d(t) :

Notice that PK(s) contains two controller state variables, xi(s) and xd(s). By using the

outputs of PK(s), the control input u(t) is given by:

u(t) =

�
kp ki kd

�
w(t) =

�
kp ki kd

�
2
66666664

e(t)

xi(t)

�
1
�d
xd(t) +

1
�d
e(t)

3
77777775

(3.8)

The entire closed-loop system can be seen as shown in Figure 3.1, whereK :=

�
kp ki kd

�

is a constant matrix.

This transformation implies that the H1 optimization problem of the controller parameters
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(a) Original closed-loop system configuration

(b) Equivalent closed-loop system with the extended plant P  (s)K

Controller

Plant

C (s)

d

u

P(s)

z

e

z d

u

(s)K

K

w

P

parameters
controller

Extended Plant

Figure 3.1: Extraction of controller parameters

can be seen as an H1 synthesis problem of a static output feedback controller for the ex-

tended plant model, PK(s). The algorithm for the H1 synthesis of static output feedback

controllers will be presented in the next section.

The above transformation procedure is not restricted to PID controllers. The optimization

algorithm proposed in this chapter can be applied to any linear controller structures that

can be transformed into the form shown in Figure 3.1 (b).

Lemma 6 Suppose that the the controller has a state space representation (Ac; Bc; Cc;Dc)
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such that the matrix

2
664 Ac Bc

Cc Dc

3
775 can be rewritten in the following form:

2
664 AK BK

CK DK

3
775 = P1 + P2KP3 (3.9)

where P1, P2 and P3 are constant (i.e. untunable) matrices with appropriate dimensions

and K is a full block of independently tunable controller parameters. Then, the closed-loop

system can be transformed into the form shown in Figure 3.1 (b).

Proof:

Suppose that the controller dynamics, C(s), is given by the state space representation (2.12).

The controller dimensions are Ac 2 Rk�k and Dc 2 Rm2�p2 .

Suppose that there exists P1, P2 and P3 that satisfy Eq. (3.9) and K 2 Rk1�k2 . Partition

P1, P2 and P3 as follows:2
664 Ac Bc

Cc Dc

3
775 = P1 + P2KP3 =

2
664 P 1

11 P 1
12

P 1
21 P 1

22

3
775+

2
664 P 2

1

P 2
2

3
775K

�
P 3
1 P 3

2

�
(3.10)

where P 1
11 2 Rk�k, P 1

22 2 Rm2�p2 , P 2
1 2 Rk�k1 and P 3

1 2 Rk2�k. Then, Ac, Bc, Cc, and Dc

are respectively given by

AK = P 1
11+P 2

1KP 3
1 ; BK = P 1

12+P 2
1KP 3

2 ; CK = P 1
21+P 2

2KP 3
1 ; DK = P 1

22+P 2
2KP 3

2 :

(3.11)

Then, the controller dynamics (2.12) can be written as

_xc(t) = (P 1
11 + P 2

1KP 3
1 )xc(t) + (P 1

12 + P 2
1KP 3

2 )e(t)

= P 1
11xc(t) + P 1

12e(t) + P 2
1 v(t)

u(t) = P 1
21xc(t) + P 1

22e(t) + P 2
2 v(t) (3.12)
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where v(t) := KP 3
1 xc(t)+KP 3

2 e(t). De�ne w(t) := P 3
1 xc(t)+P 3

2 e(t). Then, v(t) is given by

v(t) = Kw(t). Suppose that the plant is given by Eq. (2.11). By constructing the extended

plant model PK(s) such that its inputs and outputs are respectively given by

2
664 d(t)

v(t)

3
775 and

2
664 z(t)

w(t)

3
775 as shown in Figure 3.1 (b), it can be shown that:

FL(P (s); C(s)) = FL(PK(s);K) (3.13)

where PK(s) is given by

2
664 _x(t)

_xc(t)

3
775 =

2
664 A+B2P

1
22C2 B2P

1
21

P12
1C2 P 1

11

3
775
2
664 x(t)

xc(t)

3
775+

2
664 B1 +B2P

1
22D21

P 1
12D21

3
775 d(t) +

2
664 B2P

2
2

P 2
1

3
775 v(t)

2
664 z(t)

w(t)

3
775 =

2
664 C1 +D12P

1
22C2 D12P

1
21

P 3
2C2 P 3

1

3
775
2
664 x(t)

xc(t)

3
775+

2
664 D11 +D12P

1
22D21

P 3
2D21

3
775 d(t)

+

2
664 D12P

2
2

0

3
775 v(t) : 2 (3.14)

Remarks:

1. The PID controller (3.4) satis�es the above condition with

P1 =

2
66666664

��i 0 1

0 �
1
�d

1
�d

0 0 0

3
77777775
; P2 =

2
66666664

0

0

1

3
77777775
; P3 =

2
66666664

0 0 1

1 0 0

0 �
1
�d

1
�d

3
77777775
; (3.15)

and K =

�
kp ki kd

�
.
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2. Nett et al. [81] showed nine examples of the controller structures that could be trans-

formed into a static output feedback controller synthesis problem. They satisfy the

condition in Lemma 6.

3. If the controller has a state space representation (Ac; Bc; Cc;Dc) such that the full

matrix K, the entries of which are all independently tunable, can be obtained by

eliminating row(s) and/or column(s) of untunable entries from the matrix

"
Ac Bc

Cc Dc

#
,

then the closed-loop system can be transfered into the form shown in Figure 3.1 (b).

This condition is included in the condition in Lemma 6.

4. MIMO PID controllers can be also transformed into the the form shown in Fig-

ure 3.1 (b) in the analogous way as the SISO case. Another example of the controller

structure transformable into the form in Figure 3.1 (b) is a SISO controller of the

following transfer function:

Gc(s) =
bn�1s

n�1 + � � �+ b1s+ b0

sn + an�1sn�1 + � � � + a1s+ a0
(3.16)

where ai and bi (i = 0; � � � ; n� 1) are independently tunable parameters. Its control-

lable canonical form is

_xc(t) =

2
666666666664

0 1 0

...
. . .

0 1

�a0 �a1 � � � �an�1

3
777777777775
xc(t) +

2
666666666664

0

...

0

1

3
777777777775
e(t)

u(t) =

�
b0 b1 � � � bn�1

�
xc : (3.17)

This representation satis�es the condition in the previous remark. K is given by
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K =

2
664 a0 a1 � � � an�1

b0 b1 � � � bn�1

3
775.

5. Any controller, the system matrices (Ac; Bc; Cc;Dc) of which are all freely tunable,

can be transformed into the form shown in Figure 3.1 (b) with K =

2
664 Ac Bc

Cc Dc

3
775, no

matter what the order of the controller is (i.e. a reduced-order controller synthesis

problem can be always transformed into a static output feedback controller synthesis

problem).

6. Even if it is not possible to transform the problem to a static output feedback problem

where all tunable parameters appear in the static feedback block, a locally optimal

solution can be obtained by using an iterative approach and alternately optimizing a

part of the controller parameters. In many practical applications, this approach shows

suÆcient search performance. Section 3.6 presents an example of such cases.

3.3.2 H1 Optimization of Static Output Feedback Controllers

This section presents an algorithm to solve the H1 optimization problem of static output

feedback controllers. Suppose that the original H1 optimization problem of �xed structure

controller parameters (3.1) can be transformed into the following H1 optimization problem

of the static output feedback gain matrix K, as shown in the previous section:

min
K2Rm2�p2

kFL(PK(s);K)k
1

(3.18)
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Rewrite the extended plant model PK(s) as:

PK :

0
BBBBBBB@

A B1 B2

C1 D11 D12

C2 D21 D22

1
CCCCCCCA

(3.19)

The plant dimensions are given by A 2 Rn�n, D11 2 Rp1�m1 and D22 2 Rp2�m2 . The

objective of this section is to present an algorithm to �nd an H1 sub-optimal solution K 2

Rm2�p2 for the problem (3.18) (i.e. to �nd K 2 Rm2�p2 such that kFL(PK(s);K)k
1

< 


for given 
 > 0).

Recall the following solvability conditions for continuous-time H1 suboptimal controller

synthesis problems given in Theorem 4.

Theorem 4 (Solvability of Continuous-time H1 Controller Synthesis Prob-

lems { Reposted) There exists a dynamic controller C(s) of order k such that

kFL(PK(s); C(s))k1 < 
 if and only if there exist two symmetric matrices X 2 Rn�n

and Y 2 Rn�n such that

N
T

1

2
66666664

AX +XAT XCT

1 B1

C1X �
I D11

BT

1 DT

11 �
I

3
77777775
N1 � 0 (3.20)

N
T

2

2
66666664

ATY + Y A Y B1 CT

1

BT

1 Y �
I DT

11

C1 D11 �
I

3
77777775
N2 � 0 (3.21)

2
664 X I

I Y

3
775 � 0 (3.22)
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rank (XY � I) � k (3.23)

where N1 = diag fN12; Ig ;N2 = diag fN21; Ig, N12 and N21 are bases of the null space of�
BT

2 DT

12

�
and

�
C2 D21

�
, respectively.

In the full-order controller synthesis case, i.e. k � n, the condition (3.23) is trivially satis�ed

and the global solution that satis�es the LMI constraints (3.20)�(3.22) can be computed

by convex optimization. For the static controller synthesis problem (3.19), however, X and

Y that satisfy (3.20)�(3.23) with k = 0 must be searched. The rank condition (3.23) is

not a convex constraint, which makes the reduced-order H1 synthesis problem diÆcult to

solve.

Notice that the reduced-order H1 controller synthesis problem can be rewritten as a rank

minimization problem under LMI constraints [21]:

min
X;Y

rank (XY � I) subject to (3.20)�(3.22) (3.24)

For the static output feedback controller synthesis, the above rank function can be equiva-

lently replaced by the trace function by using the following lemma.

Lemma 7 Suppose X 2 Rn�n and Y 2 Rn�n are symmetric and satisfy (3.22). Then,

rank (XY � I) = 0 if and only if tr (XY ) = n.

Proof: See Apkarian and Tuan [4].

Lemma 7 implies that there exists a constant matrix, K�, such that kFL(PK(s);K
�)k

1
< 


if and only if

min
X;Y

tr (XY ) = n subject to (3.20)�(3.22) (3.25)
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This objective function is still not a convex function of X and Y . The cone complementarity

linearization algorithm [23] is employed to solve this problem. By linearizing the cost

function with respect to X and Y , we have:

min
Xi;Yi

tr (Xi�1Yi +XiYi�1) subject to (3.20)�(3.22) (3.26)

With Xi�1 and Yi�1 �xed, Xi and Yi that minimize the trace function in (3.26) can be

found by convex optimization. This observation suggests the following iterative algorithm

to �nd X and Y that satisfy (3.25).

Algorithm 1 (Continuous-time Static Output Feedback H1 Controller Synthesis)

1. Choose initial X0 = XT

0 2 Rn�n and Y0 = Y T

0 2 Rn�n that satisfy (3.20)�(3.22). If

there are none, then the problem is infeasible. Set i = 1.

2. Solve the convex optimization problem (3.26) for Xi and Yi.

3. Set i = i+ 1 and repeat Step 2 until convergence.

El Ghaoui et al. [23] showed that the objective function, ti := tr (Xi�1Yi +XiYi�1), was

monotonically non-increasing at each step, i.e. ti � ti�1. Since ti is lower bounded by 2n,

the algorithm converges.

Although this algorithm is a local search algorithm and thus is not always guaranteed to

�nd the global minimum, in most practical applications it shows excellent search perfor-

mance, as reported in [23] with extensive numerical examples.

Once the optimal X and Y that satisfy (3.25) are found, the sub-optimal output feed-

back gain matrix K�, which makes the closed-loop H1 norm (3.18) less than 
, can be
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computed by solving the following convex optimization problem for K� (See Eq. (2.32) in

Section 2.3.3).

2
66666664

ATXcl +XclA XclB1 CT

1

BT

1 Xcl �
I DT

11

C1 D11 �
I

3
77777775

+

2
66666664

CT

2

DT

21

0

3
77777775
K�T

�
BT

2 Xcl 0 DT

12

�

+

2
66666664

XclB2

0

D12

3
77777775
K�

�
C2 D21 0

�
� 0 (3.27)

where Xcl = X�1 = Y . Theorem 4 guarantees the existence of a solution K� of this

problem.

The discrete-time version of the H1 sub-optimal static output feedback controller synthesis

algorithm can be derived in an analogous way based on Theorem 5.

Algorithm 2 (Discrete-time Static Output Feedback H1 Controller Synthesis)

1. Choose initial X0 = XT

0 2 Rn�n and Y0 = Y T

0 2 Rn�n. Set i = 1.

2. Solve the following convex optimization problem for Xi and Yi:

min
Xi;Yi

tr (Xi�1Yi +XiYi�1) subject to (2.38)�(2.40) : (3.28)

3. Set i = i+ 1 and repeat Step 2 until convergence.

Similarly as the continuous-time problem case, once the optimal X and Y that satisfy

tr (XY ) = n subject to (2.38)�(2.40) are found, the H1 
-suboptimal output feedback
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gain matrix K� can be computed by solving the following problem for K�.

2
666666666664

�X�1
cl

A B1 0

AT
�Xcl 0 CT

1

BT

1 0 �
I DT

11

0 C1 D11 �
I

3
777777777775

+

2
666666666664

0

CT

2

DT

21

0

3
777777777775
K�T

�
BT

2 0 0 DT

12

�

+

2
666666666664

B2

0

0

D12

3
777777777775
K�

�
0 C2 D21 0

�
� 0 (3.29)

where Xcl = X�1 = Y .

3.4 Scaled-H1 Optimization of Static Output Feedback Con-

trollers

3.4.1 Scaled-H1 Optimization Problem

The algorithm presented in Section 3.3 can be also applied to locally solve the scaled-H1

optimization problem of �xed-structure controllers. First, this section reviews the scaled-

H1 optimization problem. See e.g. [90, 17, 91] for further details.

Suppose that the closed-loop system can be represented by using LFTs in the form shown in

Figure 3.2, where P (s) and C(s) denote the nominal plant model and controller, respectively,

and �(s) denotes modeling uncertainties. Suppose �(s) 2 �, where � is a set of norm-
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Figure 3.2: Closed-loop system con�guration with modeling uncertainties �(s)

bounded structured uncertainties de�ned by:

� := f� = diag(Æ1Iq1 ; � � � ; ÆlIql ;�l+1; � � � ;�p) j k�k1 � 1g (3.30)

where ÆiIq1 (i = 1; � � � ; l) denotes a real parametric perturbation (Æi 2 R) and �i (i =

l+ 1; � � � ; p) is a qi-input, qi-output linear (possibly time-varying) operator, which usually

denotes unmodeled dynamics.

The robust performance of this uncertain closed-loop system is de�ned by:

J(C(s)) := sup
�2�

kFU (FL(P (s); C(s));�(s))k1 (3.31)

Notice that FU (FL(P (s); C(s));�(s)) represents the closed-loop transfer function from d to

z in Figure 3.2.

The �-synthesis problem is de�ned as

min
C(s)


 subject to J(C(s)) < 
 : (3.32)

The objective of the �-synthesis problem is to �nd a controller C(s) that guarantees the

closed-loop H1 norm of the transfer function from d to z less than the given value 
 under
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the existence of any modeling uncertainties �(s) 2�. The general �-synthesis problem is

a hard problem to solve (it is proven to be NP -hard with respect to the problem size [105]).

The scaled-H1 problem is often used as its reasonable \approximation." De�ne:

Jb(C(s)) := inf

>0;D2D


 (3.33)

subject to
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2
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3
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1
2












1

< 1 :

The set of scaling matrices, D, is de�ned as follows.

D :=
�
D = diag(D1; � � � ; Dl; d1Iql+1

; � � � ; dk�lIqp)
	

(3.34)

where Di 2 Rqi�qi , Di � 0, dj 2 R, and dj > 0. The dimensions of each diagonal block

of D depend on those of the corresponding block of the uncertainty structure � (see e.g.

[125, Chapter 11]). Note that FL(P (s); C(s)) represents the closed-loop transfer function

from [!; d]T to [�; z]T in Figure 3.2.

The scaled-H1 controller synthesis problem is de�ned as

min
C(s)

Jb(C(s)) : (3.35)

It is known that for any proper controller C(s) that stabilizes the nominal plant P (s),

Jb(C(s)) gives an upper bound for J(C(s)), i.e. J(C(s)) � Jb(C(s)). That is, a solution for

the scaled-H1 controller synthesis problem always gives the upper bound for the general

�-synthesis problem de�ned in (3.32). In the special case where the model perturbation

�(s) is arbitrary fast time-varying, it was shown by Shamma [94] that the scaled-H1 opti-

mization problem (3.35) gave the exact solution for the �-synthesis problem (3.32), i.e. did

not introduce any conservativeness.
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Since the pioneer works of Doyle [17] and Safonov [91], the practical importance of the

scaled-H1 optimization problem has been recognized and considerable research e�orts have

been devoted to this problem. If the controller is a state feedback controller [83, 20], or the

plant satis�es a simplifying condition called the rank-one assumption [58], then the problem

can be reparameterized as a convex optimization problem. In general output feedback con-

troller synthesis cases, however, the problem cannot be formulated as a convex optimization

problem.

A widely used approach to obtain a local solution for the scaled-H1 (full-order) controller

synthesis problem (3.35) is the D-K iteration [17, 91]. If the scaling matrix D is �xed,

the problem becomes the standard H1 controller synthesis problem, which can be solved

by convex optimization. If the controller C(s) is �xed, the problem becomes a convex op-

timization problem on D. The D-K iteration method is a coordinate descent method to

locally solve the problem (3.35) by iterating these two steps.

The D-K iteration is a local search algorithm and thus is not always guaranteed to �nd the

global solution. Furthermore, a major disadvantage of the D-K iteration is its convergence

speed; the convergence speed of the D-K iteration can be very slow, even when the iteration

is still far from any of local minimums [120]. Several alternative local search approaches to

scaled-H1 optimization problems have been proposed (Iwasaki and Rotea [59, 90] and Ya-

mada and Hara [120]). As will be discussed in the following section, nonconvex constraints

appeared in the scaled-H1 optimization problem and the reduced-order H1 controller syn-

thesis problem are of an analogous form. Therefore, any approaches to solve reduced-order

H1 controller synthesis problems can be straightforwardly applied to scaled-H1 optimiza-

tion problems as well [21].
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3.4.2 Scaled-H1 Optimization of Static Output Feedback Controllers

The approach presented in Section 3.3.2 can be also applied to locally solve the scaled-H1

optimization problem in a straightforward manner.

The objective of the scaled-H1 (sub-)optimization problem for a continuous-time plant,

P (s), is to �nd a controller, C(s), and a scaling matrix, D 2 D, such that
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for given 
 > 0. From Theorem 4, the necessary and suÆcient condition for the existence of

the 
-suboptimal controller C(s) of order k satisfying the above inequality can be derived

as follows [90]:

Theorem 6 (Solvability of Scaled-H1 Controller Synthesis Problems)

For the given continuous-time plant P (s) (in the form (3.19)) and 
 > 0, there exists a

dynamic controller C(s) of order k and a scaling matrix D 2 D satisfying the inequality

(3.36) if and only if there exist X 2 Rn�n, Y 2 Rn�n, R 2 D, and S 2 D such that

N
T

1

2
66666664

AX +XAT XCT

1 B1

C1X �R
 D11

BT

1 DT

11 �S


3
77777775
N1 � 0 (3.37)

N
T

2

2
66666664

ATY + Y A Y BT

1 CT

1

BT

1 Y �S
 DT

11

C1 D11 �R


3
77777775
N2 � 0 (3.38)

(3.22) and (3.23)

R
 :=

2
664 R 0

0 
I

3
775 (3.39)
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S
 :=

2
664 S 0

0 
I

3
775 (3.40)

R = S�1 (3.41)

where N1 and N2 are de�ned in the same way as in Theorem 4.

Similarly as in the H1 controller synthesis case (Theorem 4), the constraint (3.23) is

automatically satis�ed for the full-order controller synthesis case (i.e. k � n). Even in full-

order synthesis case, however, the scaled-H1 optimization problem remains as a nonconvex

optimization problem due to the inverse constraint (3.41).

Notice that in the static controller synthesis case (i.e. k = 0), the rank constraint (3.23) can

be seen as an inverse constraint, i.e. X = Y �1. This observation suggests that the same

approach presented in Section 3.3.2 can be also applied to deal with the constraint (3.41).

Algorithm 3 (Scaled-H1 Optimization of Static Output Feedback Controller)

1. Choose initial X0 = XT

0 2 Rn�n, Y0 = Y T

0 2 Rn�n, R0 2 D, and S0 2 D. Set i = 1.

2. Solve the following convex optimization problem:

min
Xi; Yi2R

n�n; Ri; Si2D

tr(XiYi�1 +Xi�1Yi) + tr(RiSi�1 + SiRi�1)

subject to (3.37)(3.38)(3.22)(3.39)(3.40)

and

2
664 Ri I

I Si

3
775 � 0 : (3.42)

3. Set i = i+ 1 and repeat Step 2 until convergence.

For given 
 > 0, there exists a constant matrix, K�, and a scaling matrix, D 2 D, sat-

isfying the inequality (3.36) (replace C(s) with K�) if and only if the global minimum of
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tr(XiYi)+ tr(RiSi) is n+N , where N :=
Pp

i=1 qi (the size of a matrix in D, see Eq. (3.34)).

Notice that the constraint (3.42) is added to ensure that tr(RiSi) � N .

Once such a solution set (Xi; Yi; Ri; Si) is found, the optimal output feedback gain K� can

be computed in a similar way as presented in Section 3.3.2.

The discrete-time version of this algorithm can be derived in an analogous way based on

Theorem 5.

3.4.3 Application of Scaled-H1 Optimization

The objective of the �-synthesis problem (and its approximate version, the scaled-H1 op-

timization problem) is to �nd a controller that guarantees a certain closed-loop H1 norm

performance under the existence of any modeling uncertainties that belong to the given

uncertainty structure denoted by �. Therefore, they are more \natural" approaches than

the H1 optimization from the viewpoint of the robust control. It should be noted, however,

that the �-synthesis approach is likely to result in too conservative controllers in practical

applications. This conservativeness problem is even more crucial for the scaled-H1 op-

timization approach, since it is a conservative approximation of the �-synthesis problem.

Therefore, the applicability of the scaled-H1 optimization to practical problems is some-

times questionable, especially when the robustness is not a critical issue.

In the following sections, three practical application examples of the H1 optimization of

�xed structure controllers are presented. From the computational point of view, the dif-

ference between the algorithms to solve the scaled-H1 optimization problem and the �xed

structure H1 optimization problem is not signi�cant. See e.g. [59, 58] for application ex-

amples of the scaled-H1 optimization.
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3.5 Application Example I: PID Controller Design for Head

Positioning of a Magnetic Hard Disk Drive

3.5.1 Introduction: Head Positioning Control for a Magnetic Hard Disk

Drive

This section considers the tuning problem of a SISO PID controller for track-following con-

trol of a head positioning servo system of a magnetic hard disk drive (HDD).

An HDD storage technology continues to experience a dramatic areal density growth of 60%

every year [43]. As the storage capacity of HDDs increases dramatically, the demand for

positioning control accuracy of the read/write head of HDD is becoming more stringent.

Figure 3.3 shows the schematic view of an HDD. The head positioning servo system consists

of the magnetic read/write head, the arm, and the voice coil motor (VCM) actuator. Fixed

servo bursts written on the disks provide information on the deviation of the head from the

center of a track. A simpli�ed block diagram of the tracking control loop for head posi-

tioning of an HDD is depicted in Figure 3.4. The position error signal (PES) is measured

at the head tip. The objective of this section is to design the controller, C(s), by using

the frequency-domain loop-shaping technique based on the �xed-structure H1 optimization

algorithm proposed in Section 3.3.

The head positioning control for an HDD has attracted considerable attention in the liter-

ature (e.g. [99, 15]). Normal operation of an HDD requires quick access to many di�erent

tracks. Furthermore, the sensitivity of the head position to external disturbances, such as
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Figure 3.3: Schematic view of a hard disk drive
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-
+

Figure 3.4: Simpli�ed block diagram of tracking control loop

the vibrations due to the spindle motor rotation, track irregularities, position sensing noise,

mechanical vibrations and shocks, is also an important issue in the design of controllers. To

satisfy these two di�erent requirements, the controller for the head positioning servo system

usually has two modes; the track-seeking mode and the track-following mode. This section

focuses on the design of a feedback controller for the track-following mode. Track-to-track

pitches determine the required accuracy of positioning the head; the smaller the pitch, the

smaller the error speci�cation. This is a strong technological trend exploited by all HDD

manufacturers.

In recent years, HDD manufacturers devote considerable research e�ort into dual stage ac-
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tuators for head positioning control of an HDD (see [16] and the references therein). With

this technology, the servo bandwidth can be as wide as about 2:0 kHz compared to 600 Hz

to 900 Hz, typical bandwidths under single stage actuation with a VCM. However, the

dual-stage actuator technique is not yet mature enough for mass production. Also, the cost

associated with it is still high. Therefore, it is an important problem to tune a controller

for a VCM actuator such that it achieves the optimal performance to meet the demanded

areal density. In this section, the �xed-structure H1 controller optimization is applied to

the tuning of a head positioning controller of an HDD. The proposed method succeeds to

further improve the performance of a PID controller, which has been �nely tuned by an

experienced servo engineer.

The standard full-order H1 controller synthesis and the �-synthesis have been applied

to this problem by Hirata et al. [50] and Hernandez et al. [46], respectively. For those ap-

proaches, the order of the designed controller is always one of the major issues. Furthermore,

it is often undesirable to re-implement the whole controller structure due to time and cost

limitations.

3.5.2 Model Description

Figure 3.5 shows the experimental HDD setup. The VCM controller is implemented on

a microprocessor embedded in a commercial disk drive system. The speci�cations of the

experimental HDD system are shown in Table 3.1.

The VCM actuator dynamics is modeled as follows:

P (s) = Kvcm

!2
1

s2 + 2�1!1s+ !2
1

�

!2
2

s2 + 2�2!2s+ !2
2

�

�0:5D1s+ 1

0:5D1s+ 1
: (3.43)
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Figure 3.5: Experimental HDD setup

Table 3.1: Experimental setup speci�cations

Capacity 18.4 GB

Disks 5/3.5"

TPI 13,000

Spindle Speed 7,208 rpm

Sampling Period 99.1 �m

Average Seek Time 6.5/7.5 ms (Read/Write)

The �rst term represents the gain, and the second term represents the double integrator

characteristics at high frequencies and 
attening characteristics at low frequencies due to

the pivot friction. The high resonant mode is also included in the model. The last term

�0:5D1s+1
0:5D1s+1

represents the Pade approximation of computational delay of the controller. The

parameters in the model (3.43) are identi�ed based on the measured frequency responses

of the experimental setup. The simulated frequency response of the model (3.43) and the

measured frequency response are shown in Figure 3.6. The high mechanical resonant mode
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Figure 3.6: Simulated and measured frequency responses of the VCM actuator

appears at 3:6 kHz.

3.5.3 Controller Design Procedure

The objective of this section is to design the PID controller (3.3) for this plant based on

the proposed �xed-structure H1 optimization algorithm. The optimal PID controller is

obtained as a re-designed version of a second order compensator tuned manually by an

experienced servo engineer.

The design requirements are given as follows. 1) The open-loop cross-over frequency should
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be larger than fc = 600 Hz to secure a suÆcient bandwidth of the closed-loop system. 2)

The gain and phase margin should be larger than 5 dB and 40 degrees, respectively, for

the robustness of the closed-loop system. 3) The peak gain of the closed-loop sensitivity

transfer function should be as low as possible to reduce the resonant vibrations.

The followings are two controllers conventionally used in industrial applications:

C1(s) = K1
(s+ !n1)(s+ !n2)

(s+ !d1)(s+ !d2)
(3.44)

C2(s) = K2
(s+ !n1)(s+ !n2)(s+ !n3)

(s+ !d1)(s+ !d2)(s+ !d3)
(3.45)

where !n1 = 170�2�, !d1 = 2�10�4�2�, !n2 = 170�2�, !d2 = 7000�2�, !n3 = 750�2�,

!d3 = 1190 � 2�, K1 = 8:334 � 104, and K2 = 10:061 � 104. These controller parameters

are designed by an experienced servo control engineer based on manual loop-shaping such

that the closed-loop system achieves given performance requirements. Note that C2(s) is

designed to reduce the peak gain of the sensitivity transfer function by adding the term

(s+!n3)=(s+!d3) to introduce additional phase lead around the cross-over frequency. The

frequency responses of C1(s) and C2(s) are shown in Figure 3.8 (a).

The PID controller (3.3) is re-tuned to improve the control performance (with respect to

the above design requirements) than is provided by C1(s) and C2(s). Notice that the second

order controller, C1(s), is equivalent to the PID controller in the form (3.3) (kp = 1:147�104 ,

ki = 6:200� 106, kd = 5:173, �i = 0:0002� 2� and �d = 1=(7000 � 2�)), which implies that

the optimized PID controller should be at least better than C1(s).

First, the above design objectives are interpreted as the following H1 (sub-)optimization

problem:

Find K = (kp; ki; kd) such that










T (s)Wu(s)

S(s)Wp(s)










1

< 1 (3.46)
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where T (s) is the closed-loop complementary sensitivity function and S(s) is the closed-loop

sensitivity transfer function de�ned respectively by

T (s) =
P (s)C(s)

1 + P (s)C(s)
(3.47)

S(s) =
1

1 + P (s)C(s)
: (3.48)

The constants, �i and �d, in Eq. (3.3) are selected as �i = 0:0002�2� and �d = 1=(7000�2�)

such that the PID controller has the same poles as C1(s).

The performance �lters, Wu(s) and Wp(s), in Eq. (3.46) respectively specify the desired

shape of jT (j!)j and jS(j!)j. Wu(s) and Wp(s) are designed based on the actual closed-

loop frequency responses of T (j!) and S(j!) under the conventional controller, C2(s) (or

C1(s)), such that the solution of the problem (3.46) achieves better performance than the

conventional controllers.

Figure 3.7 illustrates the design procedure of performance �lters, Wu(s) and Wp(s). For

example, Wp(s) is designed based on the frequency response of the sensitivity transfer

function with C1(s) (or C2(s)) used in the feedback loop (Figure 3.7(b)). Then, suppose

that the optimal set of controller parameters achieves kSnew(j!)Wp(j!)k < 1, where Snew(s)

denotes the sensitivity transfer function under the new controller setting. This means

that the gain of the sensitivity transfer function is reduced over the speci�ed frequency

range (Figure 3.7(c)).

Wu(s) and Wp(s) are given as follows:

Wu(s) =
2:45 � 10s+ 4:62� 103

s+ 4:05 � 105
; (3.49)

Wp(s) =
3:25 � 10�1s2 + 1:67 � 103s+ 4:09 � 106

s2 + 3:90 � 102s+ 3:62 � 104
: (3.50)

Their inverse frequency responses are shown in Figure 3.8 (c) and (d), respectively.
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(a) Suppose the closed-loop

frequency response jSold(j!)j

under the original controller

C1(s) is given as above.

(b) Design the perfor-

mance �lter Wp(s) based

on jSold(j!)j. The circle

denotes the frequency range

where jS(j!)j must be

particularly reduced.

(c) If kSnew(s)Wp(s)k1 < 1

under the new controller, then

jSnew(j!)j < jSold(j!)j in the

speci�ed frequency range.

Figure 3.7: Design procedure of performance �lters

3.5.4 Simulation Results

The problem (3.46) can be transformed into an H1 optimization problem of static output

feedback controllers as shown in Section 3.3.1. It can be solved by applying the algorithm

presented in Section 3.3.2.

All computations have been carried out on MATLAB by using the SDP solver package LMI

Control Toolbox [34] (see Section 2.2.3). The (sub-)optimal set of controller parameters was

`obtained after 31 iterations over Xi and Yi (Step 2 in Algorithm 1). The iteration was

terminated when tr(XiYi) became less than 10:001. Note that the overall plant PK(s) is

tenth order (the original plant, P (s), is �fth order, the controller adds two state variables,

and the �lters have totally three state variables). The optimal gains, kp = 4:607 � 103,

ki = 5:932 � 106, and kd = 5:864, achieve the closed-loop H1 gain (3.46) of 1:1130.
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Figure 3.8 (a)�(d) show simulated frequency responses of (a) the controller dynamics, C(s),

(b) the open-loop transfer function, P (s)C(s), (c) the closed-loop complementary sensitivity

transfer function, T (s), and (d) the sensitivity transfer function, S(s), under two manually-

tuned controllers (C1(s) given in Eq. (3.44) and C2(s) given in Eq. (3.45)) and the designed

PID controller (denoted by Cnew(s)). The controllers were discretized by using the Tustin

transformation with the sampling time shown in Table 3.1. All frequency responses shown

in Figure 3.8 are simulated in the discrete-time domain.

It can be observed from Figure 3.8 (d) that the peak gain of the sensitivity transfer function

is reduced compared to the cases where C1(s) and C2(s) are used. Table 3.2 shows the

order, cross-over frequency, gain margin, phase margin, and the peak gain of the sensitivity

transfer function for each of three controllers. It shows that the designed PID controller

satis�es all of the given performance speci�cations. Notice that the order of Cnew(s) is less

than that of C2(s).

The superiority of the designed PID controller to C1(s) and C2(s), which were �nely tuned

by an experienced servo engineer, can be explained by two complex zeros of the designed

PID controller at s = �3:97�102�9:14�102j. They introduce additional gain drop at the

corresponding frequency and phase lead at higher frequencies to the controller frequency

response (see Figure 3.8 (a)), which leads to desirable drop of the peak gain of the sensitivity

transfer function. It is generally diÆcult to deal with complex zeros/poles by the manual

loop-shaping. The \automatic" loop-shaping by the H1 optimization has advantages to

�nd a controller that achieves better performance.
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Figure 3.8: Comparison of closed-loop frequency responses under two manually-tuned con-

trollers (\C1":C1(s) and \C2":C2(s)) and the designed PID controller (\Cnew") (simulation

results)
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Figure 3.8 (continued): Comparison of closed-loop frequency responses under two

manually-tuned controllers (\C1":C1(s) and \C2":C2(s)) and the designed PID controller

(\Cnew") (simulation results)
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Table 3.2: Performance comparison of two conventional controllers, C1(s) and

C2(s), and the designed PID controller, Cnew(s) (simulation results)

C1 C2 Cnew

Order 2 3 2

Cross-over frequency (Hz) 636 622 625

Gain margin (dB) 5.32 5.02 5.53

Phase margin (deg) 23.36 35.82 41.63

Sensitivity function peak (dB) 9.04 7.50 7.20

3.5.5 Experimental Results

The control performance of the designed PID controller was also evaluated in experimen-

tation. First, the control performance of the manually-tuned third-order controller, C2(s),

and the designed PID controller, Cnew(s), were compared by PES measurement. The PES

was logged for 1; 000 rotations of the disk with the read/write head �xed on the innermost

track of the disk.

Figures 3.9 and 3.10 show PES measurements and their frequency spectrums under the orig-

inal controller, C2(s), and the designed PID controller, Cnew(s), respectively. The PES can

be decomposed into the repeatable position error (RPE) component and the nonrepeatable

position error (NRPE) component. In (a) of each �gure, the maximum deviation of the

measured PES pro�le to the positive and negative directions (\maxPES" and \minPES",

respectively) and its RPE component (\RPE") are plotted. In (b), the maximum deviation

of the NPES component to the positive and negative directions (\maxNRPE", \minNRPE")

are plotted, as well as the the �5� pro�le of the NRPE component (\+5std" and \-5std"),

where � denotes the standard deviation (STD). (c) and (d) show frequency spectrums of

the measured PES and its NRPE component, respectively.
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\std(RPE)," \min(RPE)," and \max(RPE)" represent the standard deviation, the maximum

value, and the minimum value of the RPE pro�le, respectively. \min(std)," \max(std),"

and \ave(std)" represent the minimum value, the maximum value, and the average of the

standard devision pro�le of the NRPE component, respectively.

Table 3.4 compares the STD of the measured PES, which is composed of the RPE and

the NRPE components, between two controllers. The reduction in the STD of the NRPE

component observed in this experiment was about 15%. In the PES spectrum shown in

Figures 3.9 (c) and 3.10 (c), the gain drop around the peak frequency at about 1000 Hz and

the gain rise at lower frequencies can be observed, which validate the simulation results

shown in Figure 3.8 (d).

To further validate the simulation results, the closed-loop frequency responses were mea-

sured by using the frequency-sweep method imposing sinusoidal disturbances of the fre-

quency varying from 0:01 Hz to 25 kHz. Figure 3.11 (a)�(d) respectively show the mea-

sured frequency responses of (a) the controller dynamics, C(s), (b) the open-loop transfer

function, C(s)P (s), (c) the complementary sensitivity transfer function, T (s), and (d) the

sensitivity transfer function S(s), under C2(s) and Cnew(s). Table 3.4 shows the order,

cross-over frequency, gain margin, phase margin, and the peak gain of the sensitivity trans-

fer function for each controller.

The experimental results clearly validate the simulation results shown in the previous sec-

tion. The gain drop of the sensitivity transfer function around the crossover frequency

brought the performance improvement observed in PES responses, even though the order

of Cnew(s) is less than that of C2(s).
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Figure 3.9: Measured PES and its frequency spectrums under the conventional controller,

C2(s)
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Table 3.3: The STD of the RPE and NRPE components of measured PES

under the original controller, C2(s), and the designed PID controller, Cnew(s)

C2(s) Cnew(s) improvement

NRPE 0.036 �m 0.031 �m 13.9%

RPE 0.0163 �m 0.0165 �m -1.2%
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Figure 3.11: Comparison of closed-loop frequency responses under the manually-tuned con-

troller, C2(s) (\C2"), and the designed PID controller, Cnew(s) (\Cnew") (experimental

results)
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Figure 3.11 (continued): Comparison of closed-loop frequency responses under

the manually-tuned controller C2(s) (\C2") and the designed PID controller

Cnew(s) (\Cnew") (experimental results)

Table 3.4: Performance comparison of the conventional controller (C2) and

the designed PID controller (Cnew) (experimental results)

C2 Cnew

Order 3 2

Cross-over frequency (Hz) 510 668

Gain margin (dB) 6.70 5.70

Phase margin (deg) 37.5 41.0

Sensitivity function peak (dB) 6.0 7.1
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3.6 Application Example II: Digital Observer-based State

Feedback Controller Design for Head Positioning of a

Magnetic Hard Disk Drive

3.6.1 Introduction

This section also considers the tuning problem of a �xed-structure track-following controller

for head positioning of an HDD. The di�erences from the previous problem are summarized

as follows.

1. The plant model is based on a di�erent product by a di�erent manufacturer. The

plant dynamics is approximated by a simple double-integrator model.

2. An observer-based state feedback controller is employed instead of a PID controller.

The design objective is to tune its observer and state feedback matrices by using the

�xed-structure H1 controller optimization. Unlike the PID controller case, this prob-

lem cannot be transformed by using LFTs into a static output feedback H1 controller

synthesis problem. By using an iterative approach and alternately optimizing a part

of controller parameters, however, a locally optimal solution can be obtained. This

approach can be applied to almost any �xed-structure linear controllers and shows

suÆcient search performance in many practical applications.

3. The H1 optimization is performed in the discrete-time domain due to the discrete-

time nature of the controller structure.

4. To show the 
exibility of the proposed approach to some extent, slightly di�erent
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tuning objectives are considered. The controller tuning focuses more on the gain

reduction of the sensitivity transfer function at low frequencies than that at the peak

frequency.

3.6.2 Plant Model and Controller Structure

The VCM actuator dynamics is modeled under the assumption that the power-ampli�er is

ideal and the actuator is perfectly rigid, without any friction or mechanical resonances. In

other words, the plant dynamics, G(z), is approximated by a double-integrator model and

is represented by the following discrete-time state equations:

x(k) = 	px(k � 1) + �pu(k � 1)

y(k) = hpx(k � 1) (3.51)

where u(k) 2 R and y(k) 2 R denote the control input to the VCM actuator and the mea-

sured PES, respectively, and x(k) 2 R2 is the state vector, which consists of the position

and velocity of VCM actuator as state variables. The matrices in Eq. (3.51) are 	p 2 R2�2,

�p 2 R2�1, and hp 2 R1�2.

Consider the VCM controller, C(z), of the following well-known observer-based state feed-

back controller structure (Franklin et al. [29]):

x̂(k) = �x(k) + L(y(k)� hx̂(k))

�x(k) = 	x̂(k � 1) + �u(k � 1)

u(k) = �

�
K 1

�
x̂(k) (3.52)
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where 	 =

2
664 	p �p

01�2 1

3
775, � =

2
664 �p

0

3
775 and h =

�
hp 0

�
. K 2 R1�2 and L 2 R3�1 are

the state feedback and the state estimator gain matrices, respectively. �x(k) and x̂(k) are

the predicted and corrected system state estimates. Notice that the third state variable

represents the bias force of the actuator, i.e. the controller has an integrator in addition to

the observer-based state feedback structure.

3.6.3 Controller Design Procedure

Controller Tuning by using H1 Optimization

The objective of this section is to tune the controller parameters (K;L) in Eq. (3.52). Sim-

ilarly as in Section 3.5, it is assumed that a set of controller parameters conventionally

used for the given plant were tuned by an experienced servo engineer using any standard

approaches, such as the pole assignment technique presented in [29]. The controller de-

sign requirements are summarized as follows: 1) the open-loop cross-over frequency and

gain/phase margins should be larger than given certain levels to secure a suÆcient band-

width and the robustness of the closed-loop system, and 2) the gain of the closed-loop

sensitivity transfer function should be as low as possible to achieve the desirable distur-

bance rejection performance. In particular, the gain at low frequencies should be reduced

to reject low-mid frequency external disturbances. A high peak gain around the cross-over

frequency should be also avoided not to induce vibrations.

The objective is to re-tune the controller parameters (K; L) to improve the control perfor-

mance (with respect to the above design requirements) than is provided by the conventional
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controller setting (denoted by Cold(z)).

The above design objectives are interpreted as the following H1 (sub-)optimization prob-

lem:

Find (K; L) such that










T (z)Wu(z)

S(z)Wp(z)










1

< 1 (3.53)

where T (z) is the closed-loop complementary sensitivity function and S(z) is the sensitivity

transfer function de�ned in Eqs. (3.47) and (3.48), respectively.

The performance �lters, Wu(z) and Wp(z), in Eq. (3.53) respectively specify the desired

shape of jT (ej!)j and jS(ej!)j. They can be designed in the similar way as presented in

Section 3.5.3.

H1 Optimization of Observer and State Feedback Matrices

It can be easily seen that it is not possible to transform the problem (3.53) into a static

output feedback synthesis problem, where both K and L appear in the static block as op-

timization parameters. Thus, K and L are optimized in an alternating manner to obtain a

locally optimal solution. In many practical cases, it shows a suÆcient search performance

and results in improvement of the control performance.

Consider the problem of �nding K, with L �xed, to achieve the closed-loop H1 norm con-

straint given in Eq. (3.53). This �xed-structure H1 controller synthesis can be equivalently

transformed into the synthesis problem of the H1 (sub-)optimal static output feedback

controller using LFTs as follows.

1. Rewrite the plant dynamics, P (s), such that

2
664 T (z)Wu(z)

S(z)Wp(z)

3
775 becomes equal to FL(P (z); C(z))

(see Figure 3.12 (a)).
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(a) Closed-loop system con�guration of the

problem (3.53)

PK

controller
parameters

K

Extended Plant

r(k)

v(k)w(k)

y(k)
e(k)

(z)

(b) Extraction of controller parameters K

Figure 3.12: Transformation into the H1 optimization problem of a static output feedback

controller

2. By de�ning w(k) :=

�
x̂1(k � 1); x̂2(k � 1)

�T
and v(k) := Kw(k), the third equa-

tion in (3.52) can be rewritten as u(k) = �v(k)� x̂3(k), where x̂i(k) denotes the i-th

component of x̂(k).

3. Reconstruct the combined model PK(z) of the plant (3.51) and the controller (3.52)

such that its inputs are r(k) and v(k) and its outputs are

�
y(k) e(k)

�T
and

w(k) (see Fig. 3.12 (b)). Notice that PK(z) does not include K.

4. It is easy to see that FL(PK(z);K) is equivalent to FL(P (z); C(z)).

The \extraction" of L (with K �xed) can be done in an analogous way.

By using the above transformation, the �xed-structure H1 controller optimization problem

can be seen as the following H1 (sub-)optimization problem of a static output feedback

gain matrix K:

Find K such that kFL(PK(z);K)k
1
< 1 : (3.54)

Algorithm 2 can be applied to locally solve this discrete-time H1 optimization problem of
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static output feedback controllers.

3.6.4 Simulation Results

First, the state feedback gain matrix, K, was re-tuned by solving the problem (3.53) with

the performance �lters, Wp(z) and Wu(z), designed based on the closed-loop frequency

responses under Cold(z). Then, the observer gain matrix, L, was re-designed by slightly

modifying the performance �lters based on the optimization result ofK. Since no signi�cant

improvement was achieved by further iterations, the design procedure was terminated at

this point. All computations have been carried out on MATLAB by using LMI Control

Toolbox [36] (see Section 2.2.3).

The frequency response of a typical HDD's VCM actuator is shown in Figure 3.13. Even

though the optimization was based on the rigid body model, the simulation model of the

plant includes three mechanical resonance modes for more accurate simulations.

Figures. 3.14 and 3.15 show the frequency responses of the open-loop transfer function,

P (z)C(z), and the sensitivity transfer function, S(z), under the original controller Cold(z)

and the re-tuned controller Cnew(z), respectively. In Figure 3.14, it can be observed that

the open-loop bandwidth was increased to 940 Hz from 800 Hz by the optimization scheme.

Figure 3.15 shows that the gain of the sensitivity transfer function has been reduced up to

3 dB at low frequencies, which implies better disturbance rejection at those frequencies.

However, the peak gain is a little higher than the case where Cold(z) is used.
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Figure 3.13: The frequency response of a typical VCM actuator of an HDD



85

10
2

10
3

10
4

−50

0

50
Open loop bode plot

m
ag

ni
tu

de
 (

db
)

without optimization
with optimization   

10
2

10
3

10
4

−200

−100

0

100

200

frequency (hz)

ph
as

e 
(d

eg
)

Figure 3.14: The open-loop responses of the disk drive servo with and without the opti-

mization of controller parameters

10
2

10
3

10
4

−60

−40

−20

0

20

sensitivity bode plot

m
ag

ni
tu

de
 (

db
)

without optimization
with optimization   

10
2

10
3

10
4

−550

−500

−450

−400

−350

−300

−250

−200

ph
as

e 
(d

eg
)

frequency (hz)

Figure 3.15: The frequency responses of the sensitivity function of the disk drive servo with
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3.6.5 Experimental Results

The two controllers, Cold(z) and Cnew(z), were implemented on a laboratory prototype drive

to verify the e�ectiveness of the optimization scheme. The track density of the drive was

about 780; 000 tracks/m (20; 000 TPI, or Tracks Per Inch).

Figure 3.16 shows a portion of the measured PES spectrum with Cold(z) (three plots in the

left column) and Cnew(z) (three plots in the right column). Notice that the PES spectrum

with Cnew(z) is lower than that with Cold(z).

The standard deviation of the measured TMR (Track MisRegistration) signal for each

controller also shows the e�ectiveness of the re-design of the controller. The net reduction

in overall TMR observed in this experiment was about 20% (the track RMS TMR was

reduced from 2:2% to 1:8%). The net reduction for the RRO (Repeated Run-Out) and

NRRO (Non-Repeated Run-Out) were about the same.
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Figure 3.16: Comparison of experimentally measured TMR (Track MisRegistration) spec-

trums with the original controller setting, Cold(z) (left column) and the re-designed con-

troller, Cnew(z) (right column) (\All": measured TMR signal, \RRO": Repeated Run-Out

component of TMR signal, \NRRO": Non-Repeated Run-Out component of TMR signal,

\std": standard deviation)
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3.7 Application Example III: MISO PID Controller Design

for Lateral Control of Heavy-Duty Vehicles

3.7.1 Introduction: Lateral Control of Heavy-Duty Vehicles

Automatic Highway System (AHS) technologies have attracted growing attention among

researchers throughout the world in the past several years. AHS technologies o�er a number

of bene�ts including the saving of fuel cost and the reduction of driver's stress. The ratio of

automation cost to vehicle cost is signi�cantly lower for heavy-duty vehicles (HDVs) than for

passenger vehicles. These aspects make AHS technologies particularly attractive for HDVs.

A comprehensive review of automated control of HDVs can be found in Kanellakopoulos

and Tomizuka [62], and Tomizuka et al. [106].

This section considers the steering control problem for lateral control of a single-unit HDV

(tractor-semitrailer type). For the lateral control purpose, Chen and Tomizuka [13] have

developed a nonlinear control model of a single-unit HDV. A dynamic model of more general

multi-unit HDVs has been developed by Tai and Tomizuka [101]. The controller design

presented in this section is based on the linearized steering control model of a single-unit

HDV developed by Wang and Tomizuka [113].

The steering input has to be determined in accordance with a controller that o�ers the

stability, adequate tracking performance, and robustness to uncertainties. The challenges

in designing such a controller arise from [47]:

1. Perturbations or uncertainties in vehicle model parameters (such as inertia and its

distribution) and environment (such as changes in road friction). In particular, the
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variation of vehicle's longitudinal velocity has a signi�cant e�ect on the vehicle dy-

namics, as shown by Patwardhan et al. [85].

2. Nonlinearities in the vehicle dynamics model. If the vehicle's longitudinal velocity is

considered as a state variable of the model, it becomes an important source of the

nonlinearity. Another signi�cant source of model nonlinearities is tire force saturation.

3. Smoothness requirement of steering action for cabin comfort and longer actuator life.

Considerable research e�orts have been devoted in recent years to address the above issues

in the design of lateral motion controllers for HDVs. Many of the proposed controllers are

based on sophisticated linear or nonlinear control theories, such as the full-order H1 con-

troller by Wang and Tomizuka [113], the back stepping control by Chen and Tomizuka [14],

and the chattering-free sliding mode control by Hingwe and Tomizuka [48]. Since the

vehicle's longitudinal velocity has a signi�cant e�ect on the vehicle dynamics and is mea-

surable or easy to estimate, the controllers whose dynamics is dependent on the vehicle

velocity, as well as lateral displacement measurements of the vehicle, have shown promis-

ing results. Such controllers include the gain-scheduled linear H1 controller by Wang and

Tomizuka [114], the linear parameter varying (LPV) H1 controller by Hingwe et al. [47],

the gain-scheduled H1 controller based on the �-synthesis by Hingwe [49, Chapter 5], the

nonlinear adaptive robust control by Tai and Tomizuka [102], and the feedback linearization

controller, which will be presented in Section 6.5.

This section presents the H1 optimization of a multi-input single-output (MISO) PI (Pro-

portional plus Integral) controller for lateral control of HDVs. Since most of sophisticated

controllers found in the literature have a complicated and high-order structure, and thus

require a higher installation cost, it is of interest to evaluate the optimal performance that
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simple PI controllers can achieve. In particular, the controller design focuses on the ro-

bustness of the closed-loop system against the model uncertainties and perturbations, since

it is generally a more important issue in the automated vehicle control than the transient

response performance.

3.7.2 Model Description

The controller design presented in this section is based on the lateral motion model of a

single-unit HDV developed by Chen and Tomizuka [13]. It is a nonlinear model based on

the following assumptions: 1) the roll motion is negligible, 2) the longitudinal acceleration

is small, 3) the tire slip angles of the left and right wheels are the same, and 4) the tire force

can be linearly modeled. By further assuming that 1) the yaw angle of the tractor relative

to the road is small, and 2) the articulation angle between the tractor and semi-tractor is

small, the following linearized model can be derived [113]:

�q +A22 _q +A21q = B1Æ +B2 _�d +B3��d (3.55)

where

A21 =M�1K; A22 =M�1D;

b1 =M�1F; b2 =M�1E2; b3 =M�1E2 : (3.56)

and q = [ yr �r �f ]T is the generalized coordinate vector: yr is the lateral displacement

of the tractor's center of gravity (CG) relative to the road centerline, �r is the yaw angle of

the tractor relative to the road centerline, �f is the articulation angle between the tractor

and semi-tractor (See Figure 3.17). Æ is the steering angle and it is the control input. _�d and
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Figure 3.17: State variables of the linearized lateral motion model of HDVs

��d are the yaw rate and yaw acceleration of the road frame, respectively. They are regarded

as disturbances. See [113] for detailed descriptions of the inertial matrix M , the damping

matrix D, the sti�ness matrix K, the coeÆcient matrices F , E1, and E2. The linearized

model used in this section is based on the lateral motion model of a Freightliner FLD 120

class-8 tractor with a Grate-Dane semitrailer.

Note that 1) M is a function of m2 (cargo load in the trailer), 2) D is a function of v

(longitudinal velocity of the vehicle), m2 and � (road adhesion coeÆcient), and 3) F and K

are functions of �. Variations of these parameters are the main cause of model uncertainties.

yr and �r are measured by using the sensing system, which consists of magnets buried under

the road surface and on-board magnetometers attached at the front and rear bumpers of

the tractor.
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3.7.3 Control Objective and Controller Structure

This section focuses on the controller design for the lane following maneuver. The control

objective is to keep the lateral tracking errors at the tractor's CG and the rear of the trailer

to be small in lane-following maneuvers.

Suppose that a two-inputs single-output PI controller of the following transfer function is

used to control the lateral motion of the vehicle:

Æ(s) =

�
kp1 +

ki1

s+ �1

�
(�yr(s)) +

�
kp2 +

ki2

s+ �2

�
(��r(s)) (3.57)

where kp1, ki1, kp2, and ki2 are tunable controller parameters. �1 and �2 are added to avoid

a pure integrator. They are set to �1 = �2 = 10�6.

The closed-loop block diagram is shown in Figure 3.18. The design objective is to tune

the controller parameters (kp1, ki1, kp2, ki2) such that the closed-loop system is stable and

shows the desirable disturbace rejection perforamance for the lane-following maneuver.
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3.7.4 Controller Design Procedure

The above design objectives can be interpreted as the following H1 (sub-)optimization

problem:

Find K = (kp1; ki1; kp2; ki2) such that
















T cl

_�d!yr
(s)Wp1(s)

T cl

_�d!�r
(s)Wp2(s)

T cl

_�d!Æ
(s)Wu(s)















1

� 1 (3.58)

where T cl

_�d!yr
(s), T cl

_�d!�r
(s), and T cl

_�d!Æ
(s) denote the closed-loop transfer function from the

disturbance, _�d, to the plant outputs, ys and �r, and the control input, Æ, respectively.

The plant dynamics is assumed to be in the nominal condition (v = 18 m/s, � = 0:8 and

m2 = 10670 kg).

Wp1(s) and Wp2(s) are the performance �lters designed based on the desired dynamics

of T cl

_�d!yr
(s) and T cl

_�d!�r
(s), respectively. Wu(s) is the uncertainty �lter that is designed

based on the \acceptable" range of model uncertainties. The parametric uncertainties

in the plant model are assumed to be within the following ranges. The speed range for

HDVs is assumed to be v = 0 � 25 m/s (0 � 90 km/hour). Cargo load in the trailer

varies from m2 = 5000 � 2400 kg. The road adhesion coeÆcient is within � = 0:5 �

1:0. Figure 3.19 shows multiplicative uncertainties, �(j!), of the plant model, caused by

parametric perturbations of v, � and m2 (dotted lines). The lateral motion model (3.55)

does not include the steering actuator dynamics. Since the steering actuator dynamics is

nonlinear and it is generally diÆcult to identify its accurate model, it is treated as model

uncertainty. The dashed line shows the multiplicative error introduced by the actuator

dynamics, when it is approximated by an second order model. The robustness �lter, Wu(s),

is designed by considering the range of those \acceptable" uncertainties. The solid line
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Figure 3.19: Multiplicative uncertainties due to parameter perturbations (dotted lines:

v(0 � 25m=s), �(0:5 � 1:0) and m2(5000 � 2400kg)) and the actuator model (dashed line).

The solid line is the frequency response of the uncertainty �lter Wu(s).

shows the frequency response of the uncertainty �lter Wu(s).

Wp1(s), Wp2(s), and Wu(s) are chosen as follows:

Wp1(s) =
300(s+ 5� 10�4)

s+ 0:1
;

Wp2(s) =
20(s+ 6:667 � 10�4)

s+ 0:1
; (3.59)

Wu(s) =
9:8s2 + 19:002s + 13:248

s2 + 24:090s + 13:380
:

By using the transformation presented in Section 3.3.1, the extended plant, PK(s), can be

constructed such that FL(PK(s);K) forms the closed-loop system given in Eq. (3.58) with

K = [kp1 ki1 kp2 ki2].

The optimal set of the controller parameters, K�, which minimizes the closed-loop H1

norm (3.58), can be computed by using the algorithm presented in Section 3.3.2. All

computations have been carried out on MATLAB by using LMI Control Toolbox [36] (see

Section 2.2.3). After 15 iterations over Xi and Yi (Step 2 in Algorithm 1), tr(XiYi) = 12:000

can be achieved (the weighted plant model, PK(s), is 12th order; the original plant is 6th
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order, the controller adds two states and the �lters are totally 4th order). The optimal

gains, kp1 = 0:1997, ki1 = 0:0059, kp2 = 0:9546, and ki2 = �2:7723 achieve the closed-loop

H1 gain of 0:9992.

3.7.5 Simulation Results

Figure 3.20 shows the closed-loop frequency responses of T cl

_�d!Æ
(s) (upper), T cl

_�d!yr
(s) (mid-

dle) and T cl

_�d!�r
(s) (lower), under the designed controller. The plant is assumed to be in

the nominal condition. The dotted lines in each �gure indicate the inverse frequency re-

sponses of the performance �lters, Wu(s), Wp1(s), and Wp2(s), respectively. The controller

parameters were optimized such that each frequency response gain stays \under" that of

the inverse of the corresponding performance �lter. Since the controller design focuses more

on the robustness of the closed-loop system than the disturbance rejection performance, the

�lter Wu(s) was designed more tightly than Wp1(s) and Wp2(s).

Time-domain simulations were conducted to show the closed-loop performance of the de-

signed controller. The road curvature scenario used in numerical simulations was designed

based on the test track at Crows Landing test site [113] (Figure 3.21). In simulations, the

road curvature was treated as a disturbance to the plant dynamics by way of _�d and ��d.

Figure 3.22 shows the simulation results in the nominal condition (v = 18m/s, � = 0:8,

m2 = 10670 kg) and two perturbed conditions (v = 25m/s, � = 1:0, m2 = 24000 kg) (v =

15m/s, � = 0:6, m2 = 5000 kg). The maneuver was accomplished with an overshoot from

the lane centerline about 0:5 m at the tractor's CG (yr) in the nominal condition, about

2:5 m in the perturbed conditions. The maximum overshoots are observed when the vehicle

is entering curved sections at 825 m and 1375 m, where the road curvature changes from
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Figure 3.20: Frequency responses of the closed-loop transfer functions T cl

_�d!Æ
(s) (upper),

T cl

_�d!yr
(s) (middle), and T cl

_�d!�r
(s) (lower) under the designed controller. The dashed lines

are inverse frequency responses of the performance �lters, Wu(s) (upper), Wp1(s) (middle),

and Wp2(s) (lower), respectively.
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Figure 3.21: Scheme of the Crows Landing test site

� = �1=800 1=m to � = �1=800 1=m. Steering actions were suÆciently smooth both on

curved and straight sections.

It is noted that the lane-following performance of the designed controller is not as good

as more complicated controllers found in the literature [113, 72]. However, it stabilizes the

closed-loop system even under the existence of model uncertainties within the prescribed

range, despite its quite simple structure.

In particular, the simulation results validated that the variation of the vehicle's longitudinal

velocity had a signi�cant e�ect on the closed-loop performance. Therefore, the application

of gain-scheduled controllers, whose dynamics is dependent also on the vehicle velocity, is

critical to further improve the lane-following performance. From this point of view, Sec-

tion 6.5 will present the application of the feedback linearization control scheme to this

problem.
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Figure 3.22: Closed-loop time-domain simulations under the nominal condition (solid:v = 18

m/s, � = 0:8, m2 = 10670 kg) and two perturbed conditions (dashed:v = 25 m/s, � = 1:0,

m2 = 24000 kg) (dotted:v = 15 m/s, � = 0:6, m2 = 5000 kg)
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3.8 Summary

In this chapter, the H1 optimization algorithm for parameters of a �xed structure linear

controller was presented. The proposed algorithm consists of two steps: 1) \Extraction" of

controller parameters from the closed-loop system as a full constant block by using LFTs,

and 2) H1 synthesis of a static output feedback controller. Unlike the full-order H1 con-

troller synthesis case, the H1 optimization of static output feedback controllers cannot be

solved by convex optimization. The cone complementarity linearization algorithm is em-

ployed to locally solve the problem by iteration of convex optimization.

Even if the controller structure does not satisfy the condition required for the problem to

be equivalently transformed into a static output feedback synthesis problem, an iterative

approach similar to the one presented in Section 3.6 can be applied to obtain a locally opti-

mal solution. This approach can be applied to almost any �xed-structure linear controllers.

In many practical applications, it exhibits an adequate search performance and results in

improved control performances.

Three practical application examples of the �xed-structure H1 controller optimization were

presented. The present approach o�ers an intuitive and eÆcient method to explicitly de-

sign the frequency responses of the closed-loop system. In Section 3.5 and 3.6, the present

method was applied to re-tune �xed-structure controllers for head positioning of an HDD.

In these applications, the weighting functions were chosen such that the optimal controller

achieves better performance than the controller conventionally used for the plant. Simula-

tion and experimental results showed the e�ectiveness of the proposed approach as a �ne

tuning method to improve controller performance without requiring profound knowledge

and experiences in manual loop-shaping.
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Chapter 4

Rank Minimization Approach for Solving

BMI Problems with Random Search

4.1 Introduction

This chapter considers an algorithm to solve BMI (bilinear matrix inequality) problems of

following form (Safonov et al. [92]):

Find x = fxigi=1;���;N 2 RN

such that F0 +
NX
i=1

xiFi +
NX
i=1

NX
j=1

xixjFij � 0 (4.1)

where F0, Fi (i = 1,� � �,N), and Fij (i; j = 1,� � �,N) are constant symmetric matrices. Gen-

eral BMI problems are not convex optimization problems due to the bilinear terms in the

constraint (4.1) and, therefore, can have multiple local solutions. BMI problems are proven

to be NP-hard (Toker and �Ozbay [104]), which means that any algorithms that globally



101

solve general BMI problems are quite likely non-polynomial time algorithms.

In recent years, considerable research e�orts have been devoted to the development of algo-

rithms to solve general BMI problems. Most of the algorithms found in the literature that

claim the applicability to control-related problems of practical size are local search algo-

rithms. One of the simplest approaches is an iterative algorithm solving alternating LMIs at

each step, making use of the bilinear property of the problem. Another simple approach is

based on the linearization; under an assumption of small search steps, one can approximate

a BMI problem by an LMI problem by using the �rst-order perturbation approximation

[45]. It is, however, highly likely for such local search approaches to fail to reach the global

optimum due to the nonconvex nature of BMI problems. Goh et al. [39] showed this aspect

by using a small BMI problem as an example (see Section 4.4.1).

Most of global search algorithms found in the literature are variations of the Branch and

Bound (BB) method based on di�erent formulations of BMI problems [39, 112, 51, 6, 121,

69, 74, 107]. Although the computational eÆciency is a major focus for all of those works,

none of global search algorithms are polynomial-time algorithms due to the NP-hardness of

BMI problems. Therefore, their applicability to problems of practical size is questionable.

The approach proposed in this chapter is outlined as follows. First, it is shown that gen-

eral BMI constraints can be reformulated as a combination of LMI constraints and a rank

constraint. If the rank constraint is dropped, the problem becomes a convex optimization

problem, whose optimal objective value gives a lower bound for the original BMI problem.

This approach is analogous to the well-known SDP relaxation approach to a certain class

of combinatorial problems. Although the approximate solution of the relaxed problem can

be used with BB methods for global search, this chapter employs a linearization-based local

search algorithm to reduce the relaxation gap, which is analogous to the algorithm used
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in Chapter 3 to solve the H1 optimization problem of static output feedback controllers.

Furthermore, a random search approach can be straightforwardly applied along with the

deterministic approach. In recent years, random searches have attracted more attention in

the �eld of general nonconvex optimization as a tool that has a potential to substantially

enhance the computational eÆciency [75, 30]. The proposed formulation of BMI problems

is propitious to the introduction of random search approaches.

The proposed approach is a local search algorithm and, therefore, there is no guarantee that

it �nds the global solution. It is, however, based on a completely di�erent formulation of

BMI problems from conventional, simpler local search algorithms, and it is claimed that the

proposed approach can more likely �nd the global solution than conventional local search

approaches in practice. Considering that any global search algorithm is a non-polynomial

time algorithm due to the NP-hardness of BMI problems, the proposed approach is more

practical than any existing global search algorithm from the viewpoint of the computational

eÆciency. It is more reliable than conventional, simpler local search algorithms from the

viewpoint of the likelihood of �nding the global solution.

The remainder of this chapter is organized as follows. First, the next section brie
y re-

views a crucial role that the BMI formulation plays for generalization of H1 optimization

problems. The proposed algorithm is presented in Section 4.3. Section 4.4 presents four nu-

merical experiments to show the search performance of the proposed approach. Section 4.5

brie
y discusses the application of the proposed approach to global search. A summary is

given in Section 4.6. Much of what is presented in this chapter can be found in Ibaraki and

Tomizuka [53].
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4.2 BMI formulation of H1 Optimization Problems

Chapter 3 presented an extension of the LMI-basedH1 optimization algorithm for full-order

controllers to �xed-structure controllers. The BMI framework o�ers an uni�ed approach to

formulate a further general class of H1 optimization problems with arbitrary constraints

or additional optimization objectives. This section brie
y reviews a crucial role that the

BMI formulation plays for generalization of H1 optimization problems.

The classical H1 controller synthesis theory focuses on the following problem.

min
C(s)


 such that kFL(P (s); C(s))k1 < 
 (4.2)

where C(s) is a rational and proper transfer function matrix of controller dynamics and

P (s) is the given plant model. As discussed in Section 2.3.3, the full-order H1 controller

synthesis problem can be formulated as an SDP problem and the global optimum can be

always found by using convex optimization. A critical limitation of the LMI-based H1 con-

troller synthesis algorithm is that it allows no additional constraint containing the controller

dynamics, C(s), to be imposed on the problem; the closed-loop H1 norm constraint (4.2)

must be the only constraint imposed to the problem in order for it to be globally solvable

by convex optimization. This can be explained as follows.

Recall the SDP formulation of the continuous-time H1 controller synthesis problem (The-

orem 4 in Section 2.3.3). The direct application of the Bounded Real Lemma (Lemma 1)

to the closed-loop system (2.26) does not formulate the problem as an SDP problem. As

shown in Eq. (2.32), the formulation contains bilinear terms of the optimization variables.

The problem to �nd � and Xcl that satisfy the constraint (2.32) can be seen as a BMI

problem of the form (4.1).

In the case of the full-order H1 controller synthesis, the problem can be equivalently trans-
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formed into an LMI problem by using variable transformations (see the proof of Theorem 4).

This approach cannot be, however, applied when additional constraints, which contain the

controller dynamics, C(s), are imposed. The previous chapter considered the special case

where the controller had a structural constraint. In this case, the problem can be equiva-

lently transformed into an H1 optimization problem of a static output feedback controller.

In general, a constraint that contains the controller system matrices, �, cannot be imposed

on the LMI formulation (2.19)�(2.21), since the LMI formulation no longer contains the

original variable, �. It must be imposed on the BMI formulation (2.32). This strongly

motivates to introduce the BMI formulation for the further extension of H1 optimization

algorithms.

The following are examples of controller design problems that require additional constraints

or optimization objectives to be imposed on the H1 optimization problem:

1. Controller synthesis with constraints on the controller structure. Examples include

the �xed order/structure controller design problem, the controller design problem

with limits on controller gains [78], and the sparse feedback gain design problem [44].

2. Multi-objective optimization. Examples include the mixed H2/H1 optimization prob-

lem (e.g. [122]) and simultaneous controller optimization problem for multiple plant

models (e.g. [66]).

3. Robust optimization. Examples include the �-synthesis problem [92] and the scaled-

H1 optimization problem with constant scaling matrices (see Section 3.4).

The BMI framework o�ers a uni�ed approach to formulate these problems.
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4.3 Rank Minimization Approach for Solving BMI Problems

4.3.1 Rank Minimization Approach for Solving BMI Problems

Consider the problem given in Eq. (4.1). The problem in fact belongs to the class of inde�nite

quadratic programming, which includes BMI problems. First, the following lemma shows

that the problem (4.1) can be equivalently rewritten as a rank minimization problem subject

to LMI constraints.

Lemma 8 The inde�nite quadratic programming problem (4.1) is equivalent to the following

problem:

Find x = fxigi=1���N 2 RN and X = fXijgi;j=1���N 2 RN�N

such that F0 +
NX
i=1

xiFi +
NX
i=1

NX
j=1

XijFij � 0 (4.3)

2
664 X x

xT 1

3
775 � 0 (4.4)

rank(X) = 1 : (4.5)

The above problem can be seen as a minimization problem of the objective function,

rank(X), under LMI constraints (4.3) and (4.4). The rank minimization problems are

generally quite hard to solve (a special case which can be equivalently transformed into

an SDP problem is discussed in Mesbahi [73]). The rank minimization problems appear,

however, in many control-related optimization problems such as reduced-order H1 con-

troller synthesis and scaled-H1 optimization with constant scaling matrices, as discussed

in Sections 3.3.2 and 3.4.2, respectively.

Analogous to these cases, a linearization-based local search approach is employed to solve



106

the problem (4.3)�(4.5). Since the constraint (4.4) assures that tr(X) � xTx � 0 and

tr(X) � xTx = 0 if and only if X = xxT , there exists a solution, (x;X), that satis�es the

constraints (4.3)�(4.5) if and only if the optimal value of the following problem is zero:

min
x;X

tr(X)� xTx subject to (4.3) and (4.4) : (4.6)

By linearizing the objective function, the following descent method to �nd a local optimum

of the problem (4.6) is obtained.

Algorithm 4 (Rank minimization approach to solve BMI problems)

1. Find a feasible set (x(0); X(0)) that satis�es the constraints (4.3) and (4.4). Set k = 1.

If there is no feasible solution, then the problem is infeasible.

2. Solve the following convex optimization problem for x(k) 2 RN and X(k)
2 RN�N :

min
x(k);X(k)

tr(X(k))� 2x(k�1) Tx(k) subject to (4.3) and (4.4) : (4.7)

3. Set k = k + 1 and repeat Step 2 until convergence.

It is easy to show that this algorithm converges.

Lemma 9 The sequence tk := tr
�
X(k)

�
� 2x(k�1) Tx(k) + x(k�1) Tx(k�1) (k = 1; 2; � � �) is

bounded below by zero and non-increasing. Thus, the sequence ftkg (k = 1; 2; � � �) converges

to some value, topt � 0. Equality holds if and only if X(k) = x(k)x(k) T as k !1.

Proof:

Since tr
�
X(k)

�
� x(k) Tx(k) due to the constraint (4.5),

tk = tr
�
X(k)

�
� 2x(k�1) Tx(k) + x(k�1) Tx(k�1)
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� x(k) Tx(k) � 2x(k�1) Tx(k) + x(k�1) Tx(k�1)

=
�
x(k) � x(k�1)

�
T
�
x(k) � x(k�1)

�

� 0 : (4.8)

Furthermore, since tr
�
X(k)

�
� 2x(k�1) Tx(k) � tr

�
X(k�1)

�
� 2x(k�1) Tx(k�1),

tk = tr
�
X(k)

�
� 2x(k�1) Tx(k) + x(k�1) Tx(k�1)

� tr
�
X(k�1)

�
� x(k�1) Tx(k�1)

� tr
�
X(k�1)

�
� 2x(k�2) Tx(k�1) + x(k�2) Tx(k�2)

= tk�1 : 2 (4.9)

4.3.2 SDP Relaxation Approach to BMI Problems and Combinatorial

Problems

Consider the following minimization problem subject to BMI constraints:

min
x2RN




such that F0 +
NX
i=1

xiFi +
NX
i=1

NX
j=1

xixjFij � 
I � 0 (4.10)

where I denotes the identity matrix of the same size as F0. Then, compare with the following

problem:

min
x2RN ;X2RN�N




such that F0 +
NX
i=1

xiFi +
NX
i=1

NX
j=1

XijFij � 
I � 0

2
664 X x

xT 1

3
775 � 0 : (4.11)
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Notice that the above problem is an LMI problem and, therefore, can be globally solved

by convex optimization. From Lemma 8, it is clear that the optimal solution for the prob-

lem (4.11) gives a lower bound for the original BMI problem (4.10) (Notice that if the rank

constraint, rank(X) = 1, is added to the problem (4.11), then the problem (4.11) becomes

equivalent to the original problem (4.10)).

An analogous relaxation approach is well known to �nd an approximate solution for a cer-

tain class of combinatorial optimization problems. The Max-Cut problem is to �nd a cut of

maximum total weight in an edge-weighted undirected graph (see e.g. [88]). This problem

is one of the original NP-complete problems and thus hard to solve. It can be formulated

as an inde�nite quadratic problem in binary variables as follows:

max
x

xTQx+ 2bTx+ d subject to x 2 f�1; 1gN (4.12)

where Q = QT
2 RN�N and b; d 2 RN are given. Using the fact that x 2 f�1; 1gN can be

written as x2
i
= 1 (i = 1,: : :,N), the above problem can be equivalently transformed to:

max
x2RN ;X2RN�N

tr(QX) + 2bTx+ d

subject to

2
664 X x

xT 1

3
775 � 0; diag(X) = e; rank(X) = 1 (4.13)

where e 2 RN is the vector of all ones. If the rank constraint in the problem (4.13) is

dropped, then the problem can be solved by convex optimization, and it gives an upper

bound for the original problem (4.12). This SDP relaxation approach method proposed

by Goemans and Williamson [38] is widely accepted as the best current approximation

approach to the Max-Cut problem. Goemans and Williamson [38] have also proposed to

introduce a randomized algorithm to recover the optimal solution from the approximate
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solution (x, X). It is guaranteed to produce a solution with the expected value at worst

14% smaller than the true optimum.

The clear similarity of the formulation (4.13) of the Max-Cut problem and the formulation

(4.3)�(4.5) of the BMI problem implies that the analogous SDP relaxation approach also

o�ers a good approximation for BMI problems. The mathematical justi�cation of the SDP

relaxation approach to BMI problems can be found in Konishi and Shin [68], where three

relaxation approaches (the Lagrange relaxation, the relaxation using nonconvex quadratic

inequalities, and the SDP relaxation) are applied to the problem (4.1), and it is shown that

the SDP relaxation gives the best lower bound among them. This strongly justi�es the

approach presented in this chapter.

Notice that the application of the SDP relaxation approach (4.11) to BB methods is straight-

forward; the SDP relaxation approach gives a tight lower bound at each region of the branch-

ing space. More details will be discussed in Section 4.5. However, this chapter employs the

local search algorithm presented in Algorithm 4 to reduce the relaxation gap, considering

that any variations of the BB method are non-polynomial time algorithms due to the NP-

hardness of BMI problems. The proposed algorithm is more practically applicable than any

existing global search algorithms from the viewpoint of the computational eÆciency. Fur-

thermore, analogous to the algorithm proposed by Goemans and Williamson [38], a random

search can be also applied along with the proposed deterministic approach to enhance the

computational eÆciency, as will be discussed in the next section. Although the proposed

approach is a local search, the combination of the linearization-based descent method and

random searches can �nd the global solution in many practical applications.
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4.3.3 Random Search Algorithm

The algorithm proposed by Goemans and Williamson [38] to solve the Max-Cut problem

includes random searches. Other nontrivial examples of randomized algorithms based on

the SDP relaxation include the application to the Graph Coloring problem [63]. In both

cases, the SDP relaxation is followed by an algorithm examining several random draws from

the distribution de�ned by the solution of the relaxed problem.

The proposed formulation of BMI problems is propitious to the introduction of random

search approaches. A simple random search approach, which is analogous to the one used

in Frazzoli et al. [30], can be applied in Algorithm 4 along with the deterministic approach.

After each step of solving the problem (4.7), random samples are drawn from the Gaussian

distribution with the mean x(k) and covariance �
�
X(k)

� x(k)x(k) T
�
, where (x(k), X(k)) is

the solution for the problem (4.7) at the k-th step, and � > 0 is a scalar constant. Notice

that if X = xxT , then the distribution consists of a unique point, which is the optimal

solution of the original BMI problem (4.1). If a solution of the original problem (4.1) is

found by this search, then the algorithm is terminated. Otherwise, Step 2 is repeated.

A major disadvantage of the formulation (4.3) is that it introduces a slack variable matrix

X, which has 1
2
N(N +1) parameters. When N is large, the increase of the number of vari-

ables may signi�cantly slow down the algorithm. On the other hand, the direct applicability

of random searches is a strong advantage of the proposed formulation, and so is the fact

that the SDP relaxation approach generally gives a very good lower bound for the original

problem.
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4.4 Numerical Experiments

In this section, four numerical experiments are presented to show the search performance

of the proposed algorithm for solving BMI problems. All experiments were carried out by

using MATLAB on a PC with CPU Pentium 450 MHz. The SDP solver engine SP [109]

and its MATLAB interface LMITOOL [36] (see Section 2.2.3) were used for SDP problems.

4.4.1 A Simple BMI Problem over Two Variables

The �rst problem is a very simple BMI problem over two variables, which was shown in

Goh et al. [39] as an example of BMI problems that had multiple local minimums. The

problem is given as follows:

min
x= [x1; x2]T




subject to F (x)� 
I � 0; x1 2 [�0:5; 2] ; x2 2 [�3; 7] ; (4.14)

where F (x) = F0 + x1F1 + x2F2 + x1x2F12 and F0, F1, F2, and F12 are constant 3 � 3

symmetric matrices given as follows:

F0 =

2
66666664

�10 �0:5 �2

�0:5 4:5 0

�2 0 0

3
77777775
; F1 =

2
66666664

9 0:5 0

0:5 0 �3

0 �3 �1

3
77777775
;

F2 =

2
66666664

�1:8 �0:1 �0:4

�0:1 1:2 �1

�0:4 �1 0

3
77777775
; F12 =

2
66666664

0 0 2

0 �5:5 3

2 3 0

3
77777775
: (4.15)
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Figure 4.1: Contour plot of the greatest eigenvalue of F (x1; x2) with the trajectory of the

rank minimization approach (
#0 � 
#3)

There are three local minimums in the domain, as can be observed from the contour plot of

the greatest eigenvalue of F (x1; x2) (denoted by ��fF (x1; x2)g) shown in Figure 4.1. There-

fore, conventional local search algorithms may not be able to �nd the global optimum,

depending on the initial point.

First, the SDP relaxation approach presented in Section 4.3.2 was applied to compute the

lower bound for this problem. The relaxed problem (4.11) gave the optimal objective value


(0) = �1:000 with the solution (x
(0)
1 ; x

(0)
2 ) = (1:00; 0:00) (shown in Figure 4.1 by 
#0).

The global optimum of the problem (4.14) is known to be (x�1; x
�

2) = (1:0488; 1:4179) with the

corresponding optimal objective value 
� = ��fF (x�1; x
�

2)g = �0:9565 (see [39]). Notice that

the SDP relaxation approach gave quite a tight lower bound. Its solution x(0) = (x
(0)
1 ; x

(0)
2 )

achieved, however, only ��fF (x
(0)
1 ; x

(0)
2 )g = 5:919, which is not suÆciently close to the global

optimum.

Then, Algorithm 4 was applied starting from this initial point, x(0), to reduce tr(X(k)) �
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x(k) Tx(k) to zero. Notice that the proposed approach can be only applied to the feasibility

problem in the form (4.1). For this problem, the objective index, 
, in the problem (4.14) is

�xed to �0:9565, which is equal to the global optimum. The objective is to �nd the global

solution, x� = (x�1; x
�

2), that satis�es the constraint (4.14) with 
 �xed to this value.


 #1 � 
 #3 in Figure 4.1 indicate the optimal solutions, x(k), after the k-th step of

the rank minimization approach (4.7). After three iterations, tr(X(k))� x(k) Tx(k) became

approximately zero and x(3) achieved ��fF (x(3))g = �0:9565. The total computational time

for the initial search and three iterations was only 0:14 sec.

Since the problem is small and thus each step of solving the problem (4.7) did not com-

putationally cost much, a random search was not used. To show the e�ectiveness of the

random search presented in Section 4.3.3, however, 50 random samples were drawn from

the Gaussian distribution with the mean x(1) and the covariance X(1)
� x(1)x(1) T after

the �rst iteration (see Figure 4.2). The best objective value among 50 random samples

was ��fF (x)g = �0:9555 (the mean value, x(1), gave ��fF (x(1))g = 2:113). Although it

did not reach the global optimum, this result shows the e�ectiveness of random search to

some extent. The computational time to compute ��fF (x)g for 50 random samples was only

0:14 sec.

Finally, it should be noted that it is not necessarily because the initial point, x(0), was

already close to the global optimum that the sequence fx(k)g converged to the global op-

timum. Notice that the objective function in the rank minimization approach (4.7) is not

��fF (x)g and, therefore, the existence of multiple local minimums for ��fF (x)g does not nec-

essarily mean that the problem (4.7) also has multiple local minimums. For this particular

problem, Algorithm 4 found the global minimum by at most four iterations for any of 36

di�erent initial points in the domain.
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Figure 4.2: Random search after one step of the rank minimization approach

4.4.2 Randomly Generated BMI Problems

The proposed algorithm was then tested to solve randomly generated BMI problems of the

following form:

min
x2RN1 ; y2RN2


 such that

F0 +

N1X
i=1

xiFi0 +

N2X
j=1

yjF0j +

N1X
i=1

N2X
j=1

xiyjFij � 
I � 0 (4.16)

where F0, Fi0, F0j , and Fij (i = 1; � � � ; N1; j = 1; � � � ; N2) 2 Rm�m are randomly generated

constant symmetric matrices. Similar tests were conducted by Tuan et al. [107]. Notice

that there is no quadratic term in the constraint (4.16), i.e. the above problem is strictly a

BMI problem and less general than the class of inde�nite quadratic programming problems

given in Eq. (4.1).
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First, for each given problem, the global minimum was computed by using the BB method

proposed by Tuan et al. [107]. A major advantage of this method is that it only performs the

branching operations on either x-space of N1 dimension or y-space of N2 dimension that has

less dimension than the other. By making use of the bilinear property of BMI problems,

it reduces the dimension of the branching space signi�cantly than conventional general-

purpose BB methods such as the one presented by Goh et al. [39]. The BB operations were

iterated until the global minimum is found with 1% tolerance.

Then, Algorithm 4 was applied to solve the same problem (4.16) with 
 �xed to the global

optimum. This test was conducted for three di�erent problem settings: 1) F0, Fij 2 R3�3

and x; y 2 R3 (100 problems), 2) F0, Fij 2 R6�6 and x; y 2 R3 (100 problems), and 3)

F0, Fij 2 R3�3 and x; y 2 R5 (35 problems). In all cases, each entry of the coeÆcient

matrices are randomly generated from �10 to 10. All variables, xi (i = 1,� � �,N1) and yj

(j = 1,� � �,N2), are restricted to [0:01; 100].

Table 4.1 shows the average number of iterations and computational time that the BB

method and Algorithm 4 respectively had to perform to reach the global optimum in total

235 problems. In 40 problems (17:0% of all problems), Algorithm 4 failed to reach the

global minimum. The approach proposed in this chapter is a local search algorithm, and

thus there is no guarantee that it �nds the global minimum. For practical control-related

problems, however, it can be used at least to improve the control performance, as will be

shown in the next experiment. Although the BB method proposed by Tuan et al. [107] is

more eÆcient for solving BMI problems than conventional general-purpose BB methods, it

still requires excessively heavy computations. Computational loads increase exponentially

as the size of problem becomes larger.
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Table 4.1: The average number of iterations and computational time for the

BB method and the proposed algorithm to solve randomly generated BMI

problems

Size Fij 2 R3�3, x; y 2 R3 Fij 2 R6�6, x; y 2 R3

Number 100 100

number of average average number of average average

successes iterations time (sec) successes iterations time (sec)
BB method

100(100%) 32.20 3:103 � 102 100(100%) 100.85 1:138 � 103

number of average average number of average average

successes iterations� time� (sec) successes iterations� time� (sec)
Algorithm 4

84(84%) 14.95 8.900 81(81%) 54.69 80.97

Size Fij 2 R3�3, x; y 2 R5

Number 35

number of average average

successes iterations time (sec)
BB method

100(100%) 40.24 2:874 � 104

number of average average

successes iterations� time� (sec)
Algorithm 4

30(85:7%) 8.100 18.52

�: does not include cases that failed.

4.4.3 Mixed H2/H1 Controller Design

The next example presents the application of the proposed algorithm to more practical

control-related optimization problems. The problem is taken from [45].

Consider the following plant model:

_x = Ax+Bu+B1w; z1 = C1x+D1u; z2 = C2x+D2u (4.17)
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where

A =

2
66666664

�1:40 0:49 �1:93

�1:73 �1:69 �1:25

0:99 2:08 �2:49

3
77777775
; B =

2
66666664

0:25

0:41

0:65

3
77777775
;

B1 =

2
66666664

�0:16 �1:29

0:81 0:96

0:41 0:65

3
77777775
; C1 =

�
�0:41 0:44 0:68

�
;

C2 =

�
�1:77 0:50 �0:40

�
; D1 = D2 = 1 : (4.18)

The objective is to design a state feedback control, u = Kx, such that the closed-loop H2

norm from w to z2 is minimized, while the H1 norm from w to z1 is kept less than the

given level, 
 > 0. This problem can be formulated as a BMI problem as follows.

min �2

over P1; P2 2 R3�3; K 2 R1�3; Z 2 R; and � 2 R such that2
66666664

(A+BK)TP1 + P1(A+BK) P1B1 (C1 +D1K)T

BT

1 P1 �
I 0

C1 +D1K 0 �
I

3
77777775

� 0

2
664 (A+BK)TP2 + P2(A+BK) P2B1

BT

1 P2 �I

3
775 � 0

2
664 P2 (C2 +D2K)T

C2 +D2K Z

3
775 � 0

tr(Z) < �2; P1 � 0; P2 � 0 : (4.19)

First, the above constraints were transformed into the form given in Eq. (4.1). Then, the

initial point, x(0), was computed. For this problem, instead of using the rank relaxation
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approach given in Section 4.3.2, the following heuristic method was used to �nd a \better"

initial point.

Most of practical control-related optimization problems can be solved by convex optimiza-

tion if the design objective is relaxed. For this problem, if a common Lyapunov matrix for

the H2 and H1 problems is assumed (i.e. P1 = P2), then the problem can be equivalently

transformed into an LMI problem (see e.g. [67]). This LMI approach gave the suboptimal

solution that achieved �2 = 2:545. This solution was used as the initial point for Algo-

rithm 4. Notice that it is highly likely that this point is not even feasible once the objective

index, �, is reduced. This approach does not guarantee a faster convergence to a global

solution. In many practical applications, however, it signi�cantly reduces the number of

iterations required to reach a global solution.

Recall that the proposed approach can be applied only to the feasibility problem to �nd

the solution set, (P1, P2, K, Z), that satisfy all constraints in the problem (4.19) with

both � and 
 �xed. Therefore, iterations over � are required to solve the minimization

problem (4.19). Starting from �2 = 2:545, � was reduced at each step and Algorithm 4 was

applied to �nd a solution set for each given �.

After three iterations over � (totally 11 iterations of solving the problem (4.7)), the solution

set was found that achieved �2 = 1:875. The total computational time was 228:23 sec. The

optimal feedback gain matrix was K =

�
1:2123 �0:0713 0:5021

�
.

This solution may or may not be the global optimum. Although there is no guarantee that

the proposed approach �nds the global optimum, it can be at least used to to improve the

controller performance, as shown in this experiment. This \path-following" approach is

commonly used in most of local search algorithms to solve control-related BMI problems

(see e.g. [45]).
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4.4.4 Simultaneous State-Feedback Stabilization

The next problem is also taken from [45]. The objective is to stabilize three di�erent linear

time-invariant systems using the common state feedback control with limits on the feedback

gains. Consider the following three plants:

_x = Akx+Bku; k = 1; 2; 3 (4.20)

where

A1 =

2
66666664

1 �1 0

1 1 0

0 0 �0:5

3
77777775
; A2 =

2
66666664

1:5 �7 0

7 1:5 0

0 0 1

3
77777775
;

A3 =

2
66666664

�0:5 �3 0

3 �0:5 0

0 0 2

3
77777775
; B1 = B2 = B3 =

2
66666664

0:2477 �0:1645

0:4070 0:8115

0:6481 0:4083

3
77777775
: (4.21)

The goal is to �nd K = fKijgi=1;2; j=1;2;3 2 R2�3 satisfying jKij j � Kij;max (i = 1; 2; j =

1; 2; 3) such that the state feedback control, u = Kx, stabilizes all three plants and that the

decay rate of each closed-loop system is maximized, where Kij;max (i = 1; 2; j = 1; 2; 3)> 0

are constant. This problem is known to be NP-hard (Nemirovskii [78]). This problem can

be written as the following BMI problem:

max �

over Pk 2 R3�3 (k = 1; 2; 3); and K 2 R2�3

such that jKij j � Kij;max; i = 1; 2; j = 1; 2; 3
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Table 4.2: Number of iterations that Algorithm 4 requires to reach the solution

at each step of reducing � (\+" denotes that the solution was obtained by

random searches)

� -2.05 -1.85 -1.50 -1.00 -0.50 -0.10 0 0.10 0.30 0.50

iterations - 1 1+ 2+ 4 10 3+ 2+ 8+ 12+

� 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 total

iterations 7+ 9+ 5 6 5 5+ 5+ 4 5+ 94

(Ak +BkK)TPk + Pk(Ak +BkK) � �2�Pk

Pk � 0; k = 1; 2; 3 : (4.22)

The similar \path-following" method as presented in the previous section was used to reduce

�. Starting from � = �2:05 (if K = 02�3, then the problem (4.22) has trivially a feasible

solution for � � �2:05), � is reduced at each step. The feasible solution set, (K, P1, P2,

P3), is computed for each given � by using Algorithm 4. The optimal solution set is used

as an initial point for the next step of reducing �.

Table 4.2 shows the number of iterations required at each step. For this problem, random

searches proposed in Section 4.3.2 were performed after each iteration (100 points were

sampled after each iteration of Step 2 in Algorithm 4). \+" in Table 4.2 indicates that

the solution was obtained by random searches. Unlike the previous problem, the proposed

algorithm required too many iterations (94 iterations) to reach the optimum, � = 1:05.

This result is the same as the one obtained in [45].
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4.5 Application to Global Search Algorithms

The proposed algorithm showed satisfactory search performance in Sections 4.4.1 and 4.4.3.

There is, however, no guarantee that it �nds the the global minimum, as can be observed

in the results in Section 4.4.2. In Sections 4.4.3 and 4.4.4, only a suboptimal solution was

obtained, which may or may not be the global optimum. Furthermore, the result in Sec-

tion 4.4.4 was not satisfactory from the viewpoint of the convergence speed.

This section presents the BB method based on the SDP relaxation and the rank minimiza-

tion approach presented in Section 4.3. When the proposed local search approach does not

give a satisfactory result, one can alternatively apply this global search approach, which

utilizes the results of the local search. It should be emphasized, however, that the main

focus of this chapter is on the local search approach. As brie
y reviewed in Section 4.1,

considerable research e�orts have been devoted to global search algorithms for BMI prob-

lems. Due to the NP-hardness of BMI problems, any global search algorithms are most

likely non-polynomial time algorithms.

The basic concept of BB methods is summarized as follows. At each iteration, the variable

space is partitioned into smaller regions (\branching" operation). In each region, the lower

and upper bounds of the objective index are computed (\bounding" operation). If the lower

bound at one region is higher than the upper bound at another regions, then this region

does not contain the global optimum, and thus is discarded from further operations. The

region that is most likely to contain the global optimum is further subdivided into smaller

regions. The branching and bounding operations are iterated until the global optimum is

obtained.

The SDP relaxation approach and the rank minimization approach proposed in this chapter
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can be applied to the bounding operations. Note that this approach is analogous to the

ones suggested by Tuan et al. [107] and Konishi and Shin [68]. This section focuses only

on bounding operations. See e.g. [51, 107, 39] for further details about branching operations.

Bounding: Lower Bound Estimation

Consider a hyper-rectangular region, x 2M � RN , where

M := [p1; q1]� [p1; q1]� � � � � [pN ; qN ] : (4.23)

The objective of the bounding operation is to estimate the upper and lower bound for

the objective index, 
, of the BMI problem (4.10) within this region. As discussed in

Section 4.3.2, the SDP relaxation approach (4.11) can be applied to compute the lower

bound by imposing an additional constraint, x 2M .

Tuan et al. [107] proposed to alternatively impose a constraint on X to obtain a tighter

lower bound. It is based on the following lemma.

Lemma 10 (Tuan et al. [107])

Suppose that pi < qi and pj < qj. xi 2 R and xj 2 R satisfy:

pi � xi � qi and pj � xj � qj (4.24)

if and only if there exists xij 2 R satisfying:

xij � max fpjxi + pixj � pipj; qjxi + qixj � qiqjg (4.25)

xij � min fpjxi + qixj � qipj; qjxi + pixj � piqjg : (4.26)

By imposing the constraints (4.25) and (4.26) (i; j = 1; � � � ; N ; j � i) to the problem (4.11),

a tighter lower bound can be obtained than the case where only the constraints, pi � xi �
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qi (i = 1; � � � ; N), are imposed.

Notice that this approach introduces additional 4� 1
2
N(N+1) scalar inequality constraints,

which may signi�cantly slows down the algorithm when N is large. On the other hand, the

constraints, pi � xi � qi (i = 1; � � � ; N), only introduce 2 �N additional constraints. The

choice between these two approaches must be made by considering the trade-o� between

the computational eÆciency and the estimation accuracy of the lower bound.

Bounding: Upper Bound Computation

A feasible solution that gives an upper bound for the original problem (4.10) must be also

computed at each region. The simplest, cheapest approach is to use the solution, x, ob-

tained in the preceding lower bound computation (Fujioka and Hoshijima [31]). As can

be observed in the results of numerical experiments presented in Section 4.4, however, this

approach often gives an upper bound much higher than the true optimum.

The rank minimization approach (Algorithm 4) can be applied to compute the upper bound

at each given region. The result of the preceding lower bound estimation can be used as an

initial point, x(0). In practice, the �rst couple of iterations of Step 2 in Algorithm 4 often

gives a signi�cant reduction in the estimated upper bound. Even only one step of solving

the problem (4.7) often gives a signi�cant improvement in the upper bound computation

from the solution of the preceding lower bound estimation. Furthermore, the random search

presented in Section 4.3.3 can be additionally applied to further improve the upper bound.
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4.6 Summary

The BMI framework o�ers an uni�ed approach to formulate a general class of H1 opti-

mization problems with arbitrary constraints or additional optimization objectives. In this

chapter, the rank minimization approach to solve general BMI problems was presented. The

proposed algorithm is based on the SDP relaxation approach to inde�nite quadratic pro-

gramming problems, which is analogous to the well-known relaxation method for a certain

class of combinatorial problems. The linearization-based local search algorithm is employed

to reduce the relaxation gap. A direct applicability of random searches is also a strong

advantage of the proposed approach.

Considering that none of global search algorithms for BMI problems are polynomial-time

algorithms due to the NP-hardness of BMI problems, the proposed algorithm is more prac-

tical than any existing global search approaches from the viewpoint of the computational

eÆciency. Four numerical experiments were presented to show the search performance of

the proposed approach. Although its performance to �nd the global solution may not be

satisfactory in some cases, it can be at least used to improve the control performance by

applying the \path-following" approach presented in Sections 4.4.3 and 4.4.4.

The application of the proposed approach to global search was also discussed. When the

local search fails to give a satisfactory result, one can alternatively apply the BB method,

which utilizes the result of the local search. Similarly as any other variations of BB method,

however, it generally requires heavy computations.
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Chapter 5

H1 State Observers I: H1 Optimization of

Luenberger State Observers and Its

Application to Fault Detection Scheme

5.1 Introduction

5.1.1 H1 Optimization of Luenberger State Observers

Optimal state estimation (or �ltering) problems have been studied for decades in parallel

with optimal control problems. The celebrated Kalman �ltering approach [2], which o�ers

the optimal state estimation algorithm for linear systems when the power spectral density

of the noise is known, is deeply entrenched in the control literature. Consider a linear
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time-invariant (LTI) system of the following state-space representation:

_x(t) = Ax(t) +Bu(t) +Bww(t)

y(t) = Cx(t) +Dww(t) (5.1)

where x(t) 2 Rn is the state vector, u(t) 2 Rm1 is the control input, y(t) 2 Rp1 is the

measured output, and w(t) 2 Rm2 denotes the noise or external disturbances.

The Luenberger state observer has the following structure:

_̂x(t) = Ax̂(t) +Bu(t) + L(y � Cx̂(t)) (5.2)

where x̂(t) 2 Rn is the estimated state vector and L 2 Rn�p1 is the observer gain matrix.

Notice that the system matrices of the observer coincide with those of the plant model. The

structure of the Kalman �lter is the same as this observer. In case of Kalman �lter, the

estimator gain matrix, L, is optimized such that the H2 norm of the transfer function from

the noise, w(t), to the state estimation error, x(t) � x̂(t), is minimized. It is well known

that the Kalman �lter gain can be computed by solving one algebraic Ricatti equation

(ARE) [2].

The H1-optimal �ltering problem was �rst addressed in the late-1980s by Elsayed and

Grimble [24] based on polynomial techniques [52]. In 1991, Nagpal and Khargonekar [76]

presented the ARE-based formulation of H1-optimal state observers. It was shown that

the H1 optimization problem of Luenberger state observers for an LTI system could be,

analogous to the H2 optimization case, reparameterized as a problem to solve a set of AREs.

Other pioneering works on this subject include [7], where Bernstein and Haddad consider

H2 optimal �ltering problems with an H1 estimation error bound, and [93], where Shaked

studies the H1 �ltering problem in a frequency domain setting.
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The H1-optimal state observers have the following favorable properties compared to H2-

optimal state observers. First, the H1 optimization is preferable when there is signi�cant

uncertainty in the power spectral density of the exogenous signals [124], which is assumed

to be known in the Kalman �lter approach. The H1-optimal state observer ensures that

the energy gain from disturbances to the estimation error is less than a prescribed level, 
,

while the Kalman �lter makes 
 !1. The other advantage of H1 state observers is that 


can be used to tune the gain of the observer, which provides more 
exibility to the observer

design procedure. Practical application examples of classical H1 state observers include

[26], where Feng et al. employ the H1 observer to estimate state variables of automated

passenger vehicle dynamics for the assistance of manual vehicle steering. Compared to the

popularity that the celebrated Kalman �lter has enjoyed, however, there has not been as

many practical applications of H1-optimal state observers reported in the literature.

As demonstrated in the design of controllers in Chapter 3, the H1 optimization o�ers an

intuitive and eÆcient approach to explicitly design frequency responses of the closed-loop

system. This chapter proposes the application of this approach to the design of Luenberger

state observers. For this purpose, the augmentation of dynamics weightings to the optimiza-

tion setup is crucial. The conventional formulation of H1 state observers does not, however,

allow the augmentation of dynamic performance weightings, since it makes the problem a

nonconvex optimization problem. This chapter presents an extension of the conventional

H1 optimization algorithm of Luenberger state observers to more general frequency-domain

H1 loop-shaping design problems.
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5.1.2 Application to Fault Detection Filter Design

As an application example in which the frequency-domain estimation error performance of

a Luenberger state observer is particularly important, the proposed approach is applied to

the design of fault detection �lters for lateral control of automated passenger vehicles.

The design of reliable, fault-tolerant control systems requires that system failures be de-

tected and identi�ed such that the system feedback is not excessively corrupted. Fault

detection and isolation (FDI) problems in dynamic systems have been an active research

area in recent years. See e.g. Patton et al. [84] and Isermann [56] for an overview of fault

diagnosis and management methodologies. In particular, this chapter focuses on the state

estimator design in model-based fault detection schemes. The model-based fault detec-

tion schemes (see e.g. Frank [27]) utilizes the principle of analytical redundancy. Assuming

that the overall process model mostly agrees with the actual process dynamics, faults that

change the process behavior will lead to a mismatch (\residuals") between estimated and

measured signals. If this mismatch exceeds a prescribed threshold value, a fault is said to

have occurred.

The application of frequency domain approaches to the fault detection �lter design was

initiated by Viswanadham et al. [111]. They proposed a simple form for constructing the

residual generator and suggested the application of H1 optimization to FDI problems.

Frank and Ding [28] formulated the FDI problem in a more systematic manner and pre-

sented the H1 optimization algorithm to solve it by using factorization techniques. In

these approaches, the estimation error dynamics of state observers in the frequency domain

is particularly important.

It should be noted that the robust design problems of state observers have attracted more
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attention in recent years. In order to reduce false alarm rates and improve fault detec-

tion accuracy, residual generators must be robust against model uncertainties and external

disturbances. For example, Song and Collins [98] presented the application of the robust

H2 optimization scheme to the design of fault detection �lters, which guarantees favor-

able estimation performance under any parametric perturbations in the plant model within

prescribed ranges. However, robust observer design schemes usually require heavy compu-

tations and/or often give conservative results from the viewpoint of estimation performance.

Although the approach presented in this chapter does not explicitly address the robustness

issue, it o�ers a simple and e�ective way to incorporate the designer's expertise and under-

standing of the physical system and design objectives into the observer design.

The remainder of this chapter is organized as follows. First, Section 5.2 reviews the H1

optimization algorithm of Luenberger state observers in the case where only static weight-

ings are augmented. Section 5.3 proposes an algorithm to solve more general problems with

dynamic weightings. Section 5.4 presents an application example of the proposed approach

to the design of fault detection �lters for lateral control of automated passenger vehicles.

A brief summary is given in Section 5.5.

5.2 H1 Optimization of Luenberger State Observers with

Static Weightings

This section reviews the H1 optimization algorithm of Luenberger state observers in the

case where only static weightings are augmented in the optimization objective. In such a

case, the problem can be reparameterized as an LMI problem, and thus the global optimum
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can be always found by convex optimization. The materials presented in this section are

crucial to understanding the motivation of the nonconvex optimization approach proposed

in the next section; when dynamic weightings are augmented instead of static weightings,

the problem cannot be parameterized as a convex optimization problem.

The problem is formulated as follows. Suppose the plant dynamics is given in the state-

space representation (5.1). Consider the Luenberger state observer of the structure (5.2).

The objective is to optimize the observer matrix, L, such that the H1 norm of the transfer

function matrix from the external disturbance, w(t), to the weighted state estimation error,

z(t), is minimized. z(t) is de�ned by:

z(t) :=Ws(x(t)� x̂(t)) (5.3)

where Ws 2 Rp2�n is a constant weighting matrix. Denote this transfer function matrix by

Tw!z(s).

Lemma 11 (H1 Optimization of Luenberger State Observers with Static Weightings)

The continuous-time H1-optimal observer gain matrix, L
�, that minimizes kTw!z(s)k1 can

be obtained by L� = X�1F , where (F; X) is the optimal solution set of the following SDP

problem:

minimize 


over X 2 Rn�n; F 2 Rn�p1 and 
 2 R

subject to

2
66666664

ATX +XA� CTF T
� FC XBw W T

s

BT

wX �
I 0

Ws 0 �
I

3
77777775

� 0 (5.4)

X � 0 :
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Proof: First, notice that this problem is analogous to the H1 optimization problem of a

state feedback controller presented in Section 2.3.2.

Combining the plant dynamics (5.1) and the observer dynamics (5.2), the state estimation

error dynamics, Tw!z(s), is given in the following state space representation:

_e(t) = (A� LC)e(t) +Bww(t)

z(t) = Wse(t) (5.5)

where e(t) := x(t)�x̂(t). By applying the Bounded Real Lemma (Lemma 1 in Section 2.3.2),

it can be shown that kTw!z(s)k1 < 
 if and only if there exists X � 0 such that

2
66666664

(A� LC)TX +X(A� LC) XBw W T

s

BT

w
X �
I 0

Ws 0 �
I

3
77777775
� 0 : (5.6)

By de�ning a new variable F := XL, the above inequality can be rewritten in the LMI

form (5.4). Notice that X is always invertible, since it is restricted to be strictly positive

de�nite. 2

Note that the present LMI formulation is essentially equivalent to the ARE formulation of

this problem presented by Nagpal and Khargonekar [76].

5.3 H1 Optimization of Luenberger State Observers with

Dynamic Weightings

This section considers the same problem with a dynamic weighting matrix, Wp(s), aug-

mented instead of the static weighting, Ws. That is, the objective is to optimize the ob-
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State Observer

P(s)

P(s)

Figure 5.1: Block diagram of state estimation error dynamics

server matrix, L, such that kTw!z(s)k1 is minimized, where the weighted state estimation

error vector, z(t), is de�ned in the s-domain as follows:

z(s) =Wp(s)(x(s)� x̂(s)) : (5.7)

The block diagram of Tw!z(s) is shown in Figure 5.1.

It can be easily seen that this problem cannot be rewritten as an LMI problem by using

the variable transformation as shown in the proof of Lemma 11. When dynamic weights

are augmented, the state observer P̂ (s) is no longer a full state estimator, since the state

variables of dynamic �lters are not estimated (they do not exist in the physical system). The

same observation applies to the H1 state feedback controller synthesis problem presented

in Section 2.3.2.

The �xed-structure H1 controller optimization algorithm presented in Section 3.3 can be

applied to solve this problem in a straightforward manner. To show this, �rst consider

the transfer function from the external disturbance, w(t), to the state estimation error

vector, e(t), without a dynamic weighting matrix, Wp(s). From the state estimation error
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Figure 5.2: Extraction of the observer matrix, L

dynamics (5.5), reconstruct the extended plant model ~PK(s) as follows:

_e(t) = Ae(t) +Bww(t)� �(t)

~z(t) = e(t)

�(t) = Ce(t) : (5.8)

It is easy to see that FL( ~PK(s); L) is equal to the the state estimation error dynamics,

Tw!e(s) (see Figure 5.2).

When a dynamic weighting matrix Wp(s) is augmented, let PK(s) be the serial combination

of ~PK(s) and WP (s) as shown in Figure 5.2. Then, FL(PK(s); L) becomes equal to the

transfer function from w(t) to z(t).

Notice that the observer matrix, L, is a constant n� p1 full block matrix whose entries are

all independently tunable. Therefore, the H1 optimization algorithm of a static output

feedback controller presented in Section 3.3.2 can be applied to locally solve this problem

in the same manner.
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5.4 Application Example: Fault Detection Filter Design for

Lateral Control of Automated Passenger Vehicles

5.4.1 Introduction

It is widely recognized that building commercial automated highways necessitates the devel-

opment of a safe, reliable and eÆcient fault management system for the complete Automated

Highway Systems (AHS). See Isermann [57] for a comprehensive review of fault manage-

ment schemes for automated vehicles in the context of AHS.

Vehicle lateral control forms an integral part of AHS. The sensitive nature of the lateral

dynamics of vehicles has motivated research towards the development of fault management

systems to ensure safe operation of vehicles even in the event of faults. This section focuses

on the fault detection scheme for lateral control of automated passenger vehicles, which is a

part of a larger scheme to develop a reliable and eÆcient fault management system for AHS.

As an application example in which the frequency-domain estimation error performance of

Luenberger state observer is particularly important, the H1 optimization approach pro-

posed in the previous section is applied to the design of fault detection �lters.

5.4.2 Model Description

The design of fault detection �lters is based on the simpli�ed lateral motion model of a

passenger vehicle presented by Hingwe [49, Chapter 3]. Figure 5.3 shows a front-wheel

steered vehicle model on a curve of radius Rref . As in the HDV control case presented in

Section 3.7, magnets buried along the highway center lane are utilized as a reference for the



135

yrs

fs
cgy

Rref

y

εr

dr fd
CG

V

Figure 5.3: Four-wheel vehicle following a reference path

lane following operation. Magnetometers mounted on the front and rear bumpers of the

vehicle are used to measure the lateral deviation of the vehicle from the road center line.

The \bicycle model" presented in [49] neglects the roll and pitch motion in the vehicle and

assumes that the relative yaw angle is maintained small. Under these assumptions, the

lateral motion of the vehicle can be represented by the following linearized model:

_x = Ax+B1Æ +B2 _�d (5.9)

where x = [ ycg _ycg �r _�r ]T is the state variable vector: yr is the lateral displacement of

the vehicle's center of gravity (CG) relative to the road centerline, and �r is the yaw angle

of the vehicle relative to the road centerline (See Figure 5.3). Æ is the steering angle and it

is the control input. _�d is the yaw rate of the road frame and is regarded as a disturbance.

See [49, 26] for detailed descriptions of the system matrices, A 2 R4�4 and B1; B2 2 R4�1.

The lateral errors measured at the front bumper (yfs) and the rear bumper (yrs) are given

as follows. 2
664 yfs

yrs

3
775 =

2
664 1 0 d1 0

1 0 �d2 0

3
775 x =: Cx (5.10)
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where d1 and d2 are the distances from the vehicle's CG to the locations of front and rear

magnetometers, respectively.

A SISO linear controller was implemented for lateral control of the vehicle in lane-following

maneuvers. The input to the controller is de�ned by using the geometric look-ahead distance

scheme [85] as follows:

ys =
d2 + ds

d1 + d2
yfs +

d1 � ds

d1 + d2
yrs (5.11)

where ds can be arbitrarily speci�ed. Notice that ys represents the lateral error at the

location of the virtual sensor which is at a distance ds ahead of the vehicle's CG. When ds

is greater than df , the virtual sensor is placed \outside" the physical limit of the vehicle.

The controller, C(s), is essentially given as the combination of a second-order linear lead-lag

�lter and a notch �lter to account for roll-yaw coupling. It was successfully implemented on

a test vehicle and its control performance was veri�ed in simulation and experimentation.

The closed-loop con�guration is depicted in Figure 5.4.

5.4.3 Fault Detection Scheme

Rajamani et al. [89] developed a complete fault diagnostic system for automated passenger

vehicles, which detects and identi�es all possible faults in twelve sensors and three actuators

(e.g. wheel speed sensor, radar range sensor, longitudinal accerometer, throttle angle sen-

sor, magnetometers; brake actuator, steering actuator, and throttle actuator) used in lateral

and longitudinal control systems of the vehicle. The fault diagnostic system monitors all

sensor outputs and actuators. A bank of state observers, each of which is based on di�erent

combination of sensor measurements, generates residuals to detect and isolate each possible

fault. This section focuses only on a fault detection scheme for two sets of magnetometers
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Figure 5.4: Block diagram of fault detection scheme based on dedicated observers

to measure lateral displacements of the vehicle. It can be seen as a subsystem of a com-

plete fault diagnostic system. The same approach can be applied to the tuning of any fault

detection �lters.

Figure 5.4 depicts a block diagram of the fault detection architecture for magnetometers.

The dedicated state observer #1, P̂1(s), estimates the lateral displacements of the vehicle

at the front and rear bumpers based on the measured lateral error at the front bumper,

yfs, and the steering angle, Æ. Denote its estimates by ŷ1
fs

and ŷ1rs. The dedicated state

observer #2, P̂2(s), estimates the same two variables based on the measured lateral error

at the location of the rear sensor, yrs, and the steering angle, Æ. Denote its estimates by

ŷ2
fs

and ŷ2
rs
.

The magnetometer fault considered here appears as an o�set on sensor measurements, yfs



138

and yrs. Furthermore, faults are assumed not to occur in both magnetometers simultane-

ously. Two dedicated state observers, P̂1(s) and P̂2(s), are designed such that the di�erences

of their estimates, ŷ1
fs
� ŷ2

fs
and ŷ1rs � ŷ2rs, are kept smaller than the prescribed constant

levels during non-faulty operations. Suppose that, for example, a fault occurred in the front

sensor. Then, the dedicated observer #1 can no longer estimate the correct lateral errors,

since it is based on faulty sensor measurement, while the observer #2 is not a�ected by this

fault. Therefore, by monitoring the di�erence of each observer's estimates, one can detect

the fault. This is a basic idea of the dedicated observer based fault detection scheme.

A critical issue in the design of such dedicated observers is the robustness against external

disturbances and model uncertainties. In particular, the most signi�cant disturbance to the

lateral dynamics of the vehicle is the centering force at curved roads, which acts mostly as a

static disturbance. Since a magnetometer fault also appears as a static o�set, steady-state

estimation errors of dedicated observers must be small to distinguish faults from static dis-

turbances.

Suryanarayanan and Tomizuka [100] proposed a fault tolerant controller for lateral control

of automated passenger vehicles, which guarantees the stability of the closed-loop system

even when one of magnetometers is lost. It consists of two dedicated state observers and

the state feedback based on their estimates. The state feedback gain is optimized such that

the stability of the closed-loop system is preserved even under the occurrence of a fault

in either of the two magnetometers. The architecture of dedicated observers is exactly the

same as the one shown in Figure 5.4. Therefore, the fault detection scheme presented in this

section can be implemented without adding any redundancy on this fault tolerant control

architecture.
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5.4.4 Design Procedure of Dedicated Observers

Design Objectives

The dedicated state observers, P̂1(s) and P̂2(s), have the following Luenberger-type state

observer structures:

P̂1(s) : _̂x1 = Ax̂1 +B1Æ + L1(yfs � ŷ1
fs
)2

664 ŷ1
fs

ŷ1rs

3
775 = Cx̂1 ;

P̂2(s) : _̂x2 = Ax̂2 +B1Æ + L2(yrs � ŷ2
rs
)2

664 ŷ2
fs

ŷ2
rs

3
775 = Cx̂2 ; (5.12)

where yfs and yrs are measured lateral errors of the vehicle at the locations of the front

and rear magnetometers, respectively. x̂1 2 R4 and x̂2 2 R4 are state variables of P̂1(s)

and P̂2(s). The observer system matrices, (A;B1; C), coincide with those of the plan model

given in Eq. (5.9).

First, the observer matrices, L1 and L2, were obtained by using the Kalman �lter de-

sign [2] (the variances of external disturbances and measurement noise were assumed to be

5� 10�6). Denote these Kalman �lters as P̂ old

1 (s) and P̂ old

2 (s).

The frequency responses of estimation error dynamics of P̂ old

1 (s) and P̂ old

2 (s) from the exter-

nal disturbance, _�d, to the estimation error, efs := yfs� ŷfs and ers := yrs� ŷrs, are shown

in Figure 5.7 (dashed lines). Denote these transfer functions by T _�d!efs
(s) and T _�d!ers(s),

respectively.

The �gure implies that P̂ old

1 (s) and P̂ old

2 (s) are not e�ective for the fault detection purpose

by the following reasons:
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1. The steady state gains of error dynamics are not suÆciently small, especially that of

P̂ old

2 (s) in the T _�d!efs
(s) dynamics (the upper-left �gure).

2. The di�erences of steady state gains of P̂ old

1 (s) and P̂ old

2 (s) are not suÆciently small,

especially that in the T _�d!efs
(s) dynamics (the upper-left �gure). Since the fault

detection scheme is based on the di�erences of two observers' estimates, they must be

small during non-faulty operation.

Time domain simulations, which will be presented in Section 5.4.5, also show that P̂ old

1 (s)

and P̂ old

2 (s) are not e�ective for the fault detection purpose.

The objective of this section is to re-tune the observer matrices, L1 and L2, such that both

observers show desirable estimation error dynamics for more accurate fault detection.

Design of P̂2(s)

It is easy to see that the problem to optimize L1 and L2 at the same time cannot be trans-

formed into a static output feedback synthesis problem as shown in Section 5.3. Therefore,

L1 and L2 are optimized in an alternating manner to obtain a locally optimal solution,

similarly as presented in Section 3.6.

First, consider the tuning problem of L2, with L1 �xed to the Kalman �lter gain obtained

above. The tuning objective is to reduce the gain of T _�d!efs
(s) and T _�d!ers(s), especially

at lower frequencies, without sacri�cing the estimation stability. It can be interpreted as

an H1 optimization problem as follows:

min
L2










Wp1(s)T _�d!efs

(s)

Wp2(s)T _�d!ers(s)










1

(5.13)
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where Wp1(s) and Wp2(s) are dynamic performance weightings, which specify the desired

shapes of jT _�d!efs
(j!)j and jT _�d!ers(j!)j, respectively. As was presented in Sections 3.5

and 3.6, Wp1(s) and Wp2(s) are designed based on actual frequency responses of T _�d!efs
(s)

and T _�d!ers(s) when the Kalman �lter, P old

2 (s), is used.

The problem (5.13) can be transformed into an H1 optimization problem of a static out-

put feedback gain matrix as shown in Section 5.3. It can be locally solved by applying the

algorithm presented in Section 3.3.2. All computations have been carried out on MAT-

LAB by using LMI Control Toolbox [34] (see Section 2.2.3). The overall plant model in the

problem (5.13) is eighth order (the estimation error dynamics model is fourth order and

the performance weightings add totally four state variables). The (sub-)optimal solution,

denoted by P̂ new

2 (s), achieves the H1 norm (5.13) of 1:425, while P̂ old

2 (s) gives 15:91.

Figure 5.5 compares the frequency responses of estimation error dynamics of P̂ old

2 (s) and

P̂ new

2 (s). \Wp1" and \Wp2" represent the inverse frequency responses of performance

weightings, Wp1(s) and Wp2(s), respectively. The gain reduction at lower frequencies can

be clearly observed in both error dynamics.

Design of P̂1(s)

Then, consider the tuning problem of L1, with L2 �xed to the value obtained above. Since

the fault detection scheme is based on estimation gaps of two observers, they must be small

during non-faulty operations. Considering this requirement, the optimization objective for

L1 is given as follows:

min
L1










Wp1(s)(T

1
_�d!efs

(s)� T 2
_�d!efs

(s))

Wp2(s)(T
1
_�d!ers

(s)� T 2
_�d!ers

(s))










1

(5.14)
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Figure 5.5: Comparison of estimation error dynamics of the Kalman �lter, P old

2 (s), and the

re-tuned setting, P new

2 (s)

where T 1
_�d!efs

(s) and T 1
_�d!ers

(s) denote the estimation error dynamics of the dedicated ob-

server #1, P̂1(s), and T 2
_�d!efs

(s) and T 2
_�d!ers

(s) denote the estimation error dynamics of

the dedicated observer #2, P̂2(s). In this problem, the performance weightings, Wp1(s) and

Wp2(s), are set to Wp1(s) =Wp2(s) = 1.

Note that the above problem assumes that L2 is �xed, and therefore, T 2
_�d!efs

(s) and

T 2
_�d!ers

(s) are �xed. Therefore, the problem (5.14) can be transformed to an H1 opti-

mization problem of a static output feedback gain matrix (See Figure 5.6). Notice that

P 1
K
(s) and P 2

K
(s) are respectively constructed such that:

FL(P
1
K
(s); L1) =

2
664 T 1

_�d!efs
(s)

T 1
_�d!ers

(s)

3
775 ; FU (P

2
K
(s); L2) =

2
664 T 2

_�d!efs
(s)

T 2
_�d!ers

(s)

3
775 : (5.15)
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The overall plant model in the problem (5.14) (PK(s) in Figure 5.6) is eighth order. The

(sub-)optimal solution, denoted by P̂ new

1 (s), achieves the H1 norm (5.14) of 0:400, while

P̂ old

1 (s) gives 0:626. Figure 5.7 shows each estimation error dynamics of the Kalman �lters,

P̂ old

1 (s) and P̂ old

2 (s) (dashed lines), and the re-tuned observers, P̂ new

1 (s) and P̂ new

2 (s) (solid

lines). In Figure 5.7 (a), it can be observed that the steady state error of P̂2(s) was reduced

by the tuning, while that of P̂1(s) was slightly increased to reduce the gap between two

observers. Figure 5.7 (b) shows that the steady state errors of two observers were both

signi�cantly reduced and, therefore, the di�erence of steady state errors was also reduced.

Since no signi�cant improvement was achieved by further iterations, the design procedure

was terminated at this point.
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5.4.5 Simulation Results

Time domain simulations were conducted to show the e�ectiveness of the proposed tuning

method of dedicated state observes.

Figure 5.8 shows the simulated estimation responses of the Kalman �lters, P̂ old

1 (s) and

P̂ old

2 (s). A fault occurs in the front magnetometer at the distance 220 m, when the vehicle

is on a curved road of radius 800 m. The fault results in an o�set of 0:05 m in the yfs

measurement. The plant model is assumed to be in the nominal condition: M (sprung mass

of the vehicle)= 1740 kg, � (road adhesion coeÆcient) = 0:85, and v (longitudinal velocity

of the vehicle)= 15m/s (=54 km/hr).

The estimation gap of two observers, ŷ1
fs
� ŷ2

fs
and ŷ1rs � ŷ2rs, are shown in Figure 5.9. It

can be observed that the steady-state amplitude of ŷ1
fs
� ŷ2

fs
does not di�er much before

and after the fault occured. Therefore, the fault cannot be detected from the response of

ŷ1
fs
� ŷ2

fs
. This is because the steady state estimation error of each observer is large due to

static disturbances even under non-faulty operations.

Then, the fault detection performance of the re-tuned dedicated observers, P̂ new

1 (s) and

P̂ new

2 (s), was evaluated by using the same simulation scenario. Figure 5.10 shows the esti-

mation gap pro�les, ŷ1
fs
� ŷ2

fs
and ŷ1rs� ŷ

2
rs, when P̂

new

1 (s) and P̂ new

2 (s) are used. The steady

state errors between two observers became smaller during non-faulty operations, and thus

the fault can be easily detected by setting the threshold values at 0:02 � 0:04m for both of

jŷ1
fs
� ŷ2

fs
j and jŷ1

rs
� ŷ2

rs
j. Figure 5.11 shows the simulation results in the same condition

when the measurement noise of the mean 0:02m (experienced in practice) is added to the

output of both the sensors.

Finally, it should be noted that the present fault detection scheme is by nature robust against
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fs

and ŷ2rs:

estimation by P̂ old

2 (s))
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Figure 5.9: The estimation gap pro�les, ŷ1
fs
� ŷ2

fs
(left) and ŷ1rs� ŷ2rs (right), corresponding

to Figure 5.8
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tuned observers, P̂ new
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2 (s), in the nominal condition (M = 1; 740 kg, � = 0:85,

v = 15m/s)
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� ŷ2

fs
(left) and ŷ1rs� ŷ
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Figure 5.12: The estimation gap pro�les, ŷ1
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(left) and ŷ1
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(right), of the re-tuned

observers, P̂ new

1 (s) and P̂ new

2 (s), in two perturbed conditions (\p1": M = 2; 610 kg, � = 1:0,

v = 20m/s) (\p2": M = 870 kg, � = 0:5, v = 10m/s)

model uncertainties to some extent, although the robustness issue was not explicitly consid-

ered in the design of dedicated observers. Figure 5.12 shows the simulation results in two

perturbed conditions, (\p1": M = 2; 610 kg, � = 1:0, v = 20m/s) and (\p2": M = 870 kg,

� = 0:5, v = 10m/s). P̂ new

1 (s) and P̂ new

2 (s) can produce similar residuals at steady state

even in perturbed conditions.

5.5 Summary

In this chapter, the H1 optimization algorithm of Luenberger state observers was pro-

posed. The conventional formulation of H1-optimal state observers does not allow the

augmentation of dynamic performance weightings in the optimization setup, since it makes

the problem a nonconvex optimization problem. The H1 optimization algorithm of �xed-

structure controllers presented in Chapter 3 can be straightforwardly applied to such cases.

The proposed approach o�ers an intuitive way to explicitly design the estimation error dy-
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namics of the observer in the frequency domain. As an application example, the proposed

approach was applied to the design of fault detection �lters for lateral control of automated

passenger vehicles. For accurate fault detection in vehicle control systems, the robustness

of the dedicated observers against external disturbances of low frequencies is particularly

important. The proposed approach was applied to re-tune the observer gain matrices of two

dedicated observes. Simulation results showed the e�ectiveness of the proposed re-tuning

method.
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Chapter 6

H1 State Observers II:

Taming Internal Dynamics by Mismatched

and H1-Optimized State Observer

6.1 Introduction

6.1.1 Matched and Mismatched State Observers

The previous chapter has considered the H1 optimization problem of Luenberger-type state

observers (5.2). The systemmatrices of Luenberger state observers coincide with those of the

plant model, and only the observer matrix, L, can be tuned to obtain desirable estimation

error dynamics. In the previous chapter, it was shown that the H1 optimization problem

of the observer matrix can be solved by convex optimization if no dynamic weighting is
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augmented in the optimization objective. If a dynamic weighting is augmented, then the

problem can be locally solved by equivalently transforming into a static output feedback

synthesis problem.

This chapter considers the state observer of the following structure:

_xo(t) = Aoxo(t) +Bo1u(t) +Bo2y(t)

x̂(t) = Coxo(t) +Do1u(t) +Do2y(t) : (6.1)

The state estimate vector, x̂, is given as the output vector of the observer, not as the state

vector. The observer system matrices, (Ao; Bo1; Bo2; Co; Do1;Do2), are not restricted to co-

incide with the system matrices of the plant (i.e. the system matrices of the observer and

those of the plant are \mismatched"). Even their sizes do not have to coincide with those of

the plant system matrices. Therefore, the choice of observer system matrices is completely

open. By properly choosing the system matrices, the mismatched state observers can show

better estimation performance than Luenberger state observers.

It should be noted that the mismatched state observer is not a new idea. The mismatched

state observers is merely the generalization of Luenberger state observers. There has not

been, however, many control applications of mismatched observers reported in the litera-

ture, mainly because Luenberger state observers are simpler to design, especially when they

are used in state feedback control. More applications of optimal mismatched observers can

be found in the �eld of signal processing. The H1 optimization of mismatched observers

has particularly attracted more attention in recent years, mainly due to its capability to

explicitly deal with the robustness issue. The objective of robust �ltering problems is to

design an observer such that it guarantees the certain estimation performance even under

the existence of model uncertainties or parametric perturbations. Robust �ltering problems
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are generally hard to solve. Considerable research e�orts have been devoted from the view

point of robust optimization, including the robust H1 optimization (Xie et al. [118] and

Wang et al. [115]) and robust H2 optimization (Xie et al. [119], Tuan et al. [108], and Song

and Collins [98]).

This chapter focuses more on the application of mismatched state observers. The applica-

tion of mismatched observers to the state estimation under the feedback linearization control

scheme is proposed. The feedback linearization control scheme is a nonlinear state feedback

control that o�ers a simple and e�ective gain-scheduled control for linear parameter-varying

(LPV) plants. This chapter demonstrates a novel application of mismatched observers to

the problems where Luenberger state observers should not be applied in order to achieve

desirable closed-loop performance.

6.1.2 Application of Mismatched State Observers to Feedback Lineariza-

tion Control Scheme

Linear parameter-varying (LPV) systems are linear time-varying plants whose state-space

matrices are �xed functions of a vector of known time-varying parameters, �(t). They can

be generally described by state-space equations of the following form:

_x(t) = A(�(t))x(t) +B(�(t))u(t)

y(t) = C(�(t))x(t) +D(�(t))u(t) : (6.2)

The simplest gain-scheduled controller design methodology for this class of plants is linear

interpolation of locally designed linear controllers. First, the parameter space is divided into

areas of small variation where the plant can be regarded as a linear time-invariant (LTI)
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system. A local LTI controller is then designed for each frozen value of the parameter �(t),

and the overall control law is given as linear interpolation of these local controllers. This ap-

proach is e�ective only under the assumption that the scheduling parameter, �(t), changes

slowly (Shamma and Athans [95]). Researchers in H1 robust control �eld have developed

several gain-scheduled linear control schemes that guarantee the stability and H1 norm

performances of the closed-loop system for varying parameter �(t) (e.g. Apkarian et al. [3]

and Wu et al. [117]), although they either introduce conservativeness to controller design or

require heavy computations.

Those linear interpolation methods essentially \approximate" a nonlinear plant by linear

combination of a multiple of local linear models. On the other hand, the feedback lin-

earization control (e.g. Slotine and Li [97]) cancels all parameter-dependent terms in the

closed-loop input-output dynamics without using any linear approximation. It can be seen

as a gain-scheduled state feedback controller in the sense that its state feedback gain matrix

is dependent on the scheduling parameters.

When the relative degree of the plant is less than its order, the internal dynamics arises in

the closed-loop system under the feedback linearization control, which may or may not be

stable. This chapter considers the stabilization of systems with unstable internal dynamics.

Conventional methods to avoid the undesirable internal dynamics include employment of

the \outer-loop" linear feedback controller (e.g. Hingwe [49] presented the application of

such a method to lateral control of passenger vehicles). Employment of the \outer-loop"

controller makes the entire controller structure much more complicated. Furthermore, the

closed-loop performances are likely dominated by the outer-loop controller, not by the inner-

loop feedback linearization controller, which sometimes obscures the role of the feedback

linearization controller.
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If the feedback linearization control law includes the state feedback terms and the state vec-

tor is not directly available, it is necessary to design a state observer. When the Luenberger-

type state observer is used, the internal dynamics is completely preserved (the separation

theorem for the closed-loop eigenvalues for observer state feedback control [70]). While it

may be argued that the feedback linearization scheme should not be used if the zero dy-

namics is unstable, the use of mismatched observer avoids to make it internal dynamics.

An illustrative example will be given later in this chapter to clarify this point. By making

the choice of state matrices of the observer completely open, the observer can be tuned such

that it not only provides the controller with good estimation of state variables of the plant,

but also stabilizes the overall closed-loop system. The LMI-based H1 controller synthesis

algorithm can be straightforwardly applied to such design. By cooperating with the H1

loop-shaping technique, the set of system matrices of the observer can be optimized such

that it gives the estimates of the plant state variables with the desired estimation error

dynamics.

The remainder of this chapter is organized as follows. In the next section, the feedback

linearization control scheme is outlined. The proposed design methodology of the state

observer is presented in Section 6.3. Sections 6.4 and 6.5 present two application examples.

In the �rst example, the feedback linearization controller and the proposed mismatched

observer were applied to a second order system to illustrate how the proposed mismatched

observer stabilizes the entire closed-loop system. The second example is the lateral con-

trol problem of heavy-duty vehicles (HDVs). Numerical simulations are conducted to show

time-domain closed-loop performances of the designed controller and observer. Much of

what is presented in this chapter can be found in Ibaraki and Tomizuka [55].
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6.2 Feedback Linearization Control Scheme

The feedback linearization control scheme determines the control input such that it cancels

all nonlinear terms in the closed-loop input-output dynamics. See e.g. [97] for its general

formulation. Here, as an example, consider a SISO second-order dynamic system of the

following form:

�q(t) +A22(�) _q(t) +A21(�)q(t) = B(�)u(t)

y(t) = C(�)q(t) (6.3)

where q(t) is a vector of n state variables, u(t) is a scalar control input, y(t) is a scalar

output and, � is a vector of scheduling parameters. Suppose C(�)B(�) 6= 0 for any �.

De�ne the control law by

u(t) =
1

C(�)B(�)
fC(�)A21(�)q(t) + C(�)A22(�) _q(t)

�k1 _y(t)� k2y(t)� k3

Z
t

0
y(�)d� + v(t)g (6.4)

where k1, k2, and k3 are constant. The closed-loop input-output dynamics becomes

�y(t) + k1 _y(t) + k2y(t) + k3

Z
t

0
y(�)d� = v(t) : (6.5)

The integral term in the control law (6.4) is added to reject static disturbances. Notice that

Eq. (6.5) is completely independent of �.

Equation (6.3) can be rewritten in the standard state space representation by de�ning the

state vector, x = [ q(t)T _q(t)T ]T . This can be combined with the control law (6.4) to

describe the closed-loop dynamics. Notice that there are only three tunable controller pa-

rameters, while the closed-loop system is (2n + 1)th order. Therefore, it is impossible to

assign all closed-loop poles by the choice of the controller gains. The internal modes that
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cannot be controlled by the feedback linearization controller are called internal dynamics,

which may or may not be stable.

6.3 Mismatched and H1-Optimized State Observer

One way to deal with unstable internal dynamics is to employ an \outer-loop" linear con-

troller (e.g. Hingwe [49]). The entire closed-loop con�guration is shown in Figure 6.1. A

linear time-invariant (LTI) H1 controller is used as an outer-loop controller in order to

stabilize the entire closed-loop system and enhance its robustness.

This chapter proposes to design the state observer such that it not only provides good es-

timates of the plant state variables, but also stabilizes the entire closed-loop system. The

closed-loop con�guration is shown in Figure 6.2. Advantages of the proposed approach are

clear; �rst, the overall controller structure is much simpler. Furthermore, the desired closed-

loop input-output dynamics is easier to obtain since, in the outer-loop controller approach,

the overall input-output dynamics is often determined by the outer-loop controller, not by

the inner-loop feedback linearization controller.

When the classical Luenberger state observer (5.2) is used for estimating the state vector in

the feedback linearization control law, the internal dynamics is completely preserved in the

overall closed-loop system. To see this, consider the plant model (5.1), the Luenberger state

observer (5.2), and the observer state feedback law: u(t) = F x̂(t) + v(t). The separation

theorem for the closed-loop eigenvalues for observer state feedback control [70] states that

every eigenvalue of the overall closed-loop system is given by either that of A + BF or

A � LC. That is, the eigenvalues of the combined system of the plant and controller are
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Figure 6.2: Closed-loop con�guration with the proposed mismatched observer

completely preserved in the overall closed-loop system. Notice that A + BF includes the

modes in the internal dynamics. In other words, the Luenberger observer does not a�ect

the internal dynamics.

Consider the application of the mismatched state observer of the form (6.1). Recall that

the observer system matrices (Ao; Bo1; Bo2; Co;Do1;Do2) are not restricted to coincide with

the system matrices of the plant. The set of those system matrices is required to satisfy

the following design objectives: 1) the observer outputs the estimated state variables of

the plant with desired estimation error dynamics, and 2) the overall closed-loop system is
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stabilized. These requirements can be written in the form of the H1 norm performance

objective as follows:

kWo(s)FL(PK(s); Co(s))k1 < 1 (6.6)

where Wo(s) is a performance �lter transfer function matrix, PK(s) denotes the combined

system of the plant (6.3) and the feedback linearization controller (6.4), and Co(s) is the

transfer function of the mismatched state observer (6.1). FL(PK(s); Co(s)) denotes the

closed-loop dynamics from v to e := x� x̂, as shown in Figure 6.3.

For the simplicity, suppose the scheduling parameter vector, �, is �xed to some nominal

value in the plant dynamics (6.3) and the control law (6.4), and thus PK(s) can be regarded

as an LTI system. Then, the standard full-order H1 controller synthesis algorithm (see

Section 2.3.3) can be applied to search for such a state observer structure, since the choice

of the observer system matrices is completely open. Notice that the observer, Co(s), is

designed such that the overall closed-loop system under the observer-based state feedback

control is stabilized. Also note that the full-order H1 controller synthesis algorithm gives

the state observer Co(s) of the same order as the combination of PK(s) and Wo(s). The

reduced-order H1 controller synthesis algorithm (Section 3.3.2) can be also applied to re-

duce the order of Co(s).
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In the Luenberger observer, only the observer gain matrix, L, can be tuned to obtain the

desired estimation error dynamics. By making every system matrix open for tuning, the

observer structure that stabilizes the entire closed-loop system could be found. Notice that

this observer is inherently mismatched (i.e. the system matrices of the observer do not

match those of the plant) and thus the separation theorem for the closed-loop eigenvalues

does not apply. In other words, the closed-loop input-output dynamics is a�ected by the

observer dynamics. By appropriately choosing the performance �lterWo(s) in Eq. (6.6) and

designing the estimation error dynamics of the observer properly, however, the e�ect of the

observer dynamics on the closed-loop input-output dynamics can be minimized.

Remarks:

1. When the scheduling parameters are varying, although the closed-loop input-output

dynamics is still time-invariant due to the cancellation of parameter-dependent terms

by feedback linearization, the internal dynamics becomes time-varying. In such cases,

the above state observer, Co(s), does not even guarantee the stability of the closed-loop

system, since it was designed under the assumption that PK(s) was an LTI system.

If variations of scheduling parameters cause serious performance deterioration, more

advanced robust optimization methods (e.g. �-synthesis) or gain-scheduled controller

design methods (e.g. Apkarian et al. [3] and Wu et al. [117]) should be applied, al-

though they generally require a heavier computational load and/or result in more

complex controllers.

2. When the Luenberger observer is used for state estimation, the closed-loop input-

output dynamics is given by Eq. (6.5) for any �. Therefore, the desired closed-loop
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dynamics can be easily obtained by properly tuning three controller parameters,

(k1; k2; k3). This is a strong advantage of the feedback linearization control scheme.

The Luenberger observer, however, should not be used when the internal dynamics is

unstable. The proposed approach guarantees the stability of the overall closed-loop

system even in such a case, by slightly \sacri�cing" the estimation performance.

3. The feedback linearization control scheme can be applied not only to LPV systems,

but also to general nonlinear systems. The proposed observer design method focuses,

however, only on LPV systems, which can be regarded as LTI systems when scheduling

parameters are �xed.

6.4 Application Example I: An Illustrative Second-order Plant

Example

Consider a second-order system of the following form:

_x1(t) = x2(t)

_x2(t) = a1x1(t) + a2x2(t) + u(t)

y(t) = x1(t)� x2(t) (6.7)

where u(t) is a scalar control input and y(t) is a scalar system output. For simplicity, let

a1 and a2 be constant (a1 = a2 = 1). The feedback linearization control law is given by

u(t) = �a1x1(t)� (1 + a2)x2(t)� ky(t) + v(t) (6.8)
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where k is constant and v(t) is a new input. Then, the closed-loop input-output dynamics

becomes

_y(t) + ky(t) = v(t) (6.9)

The overall closed-loop dynamics is given by combination of Eqs. (6.7) and (6.8):

d

dt

2
664 x1(t)

x2(t)

3
775 =

2
664 0 1

k 1� k

3
775
2
664 x1(t)

x2(t)

3
775+

2
664 0

1

3
775 v(t) (6.10)

The closed-loop poles are at s = 1;�k. The pole at s = �k dominates the closed-loop

input-output dynamics. The unstable pole at s = 1 is unobservable from the output and

de�nes the internal dynamics. Note that it cannot be altered by the controller gain. Here,

k is set to 0.1.

Notice that the control law (6.8) assumes that both state variables are available. The

Luenberger observer is formulated by

d

dt

2
664 x̂1(t)

x̂2(t)

3
775 =

2
664 0 1

a1 a2

3
775
2
664 x̂1(t)

x̂2(t)

3
775+

2
664 0

1

3
775u(t) +

2
664 l1

l2

3
775 e(t) (6.11)

where e(t) := y(t)�(x̂1(t)�x̂2(t)). The closed-loop pole locations with the above Luenberger

state observer (l1 = 10 and l2 = 5) are shown in Figure 6.4 (left) (\Æ"). Compared with

the closed-loop poles of Eq. (6.10) shown in the same �gure (\+"), it can be seen that the

Luenberger observer simply adds two new poles. The pole at s = 1 is not a�ected at all by

the Luenberger observer and the closed-loop system is unstable.

Next, the proposed mismatched observer is designed for this plant. The design objective is

given by 


Wo(s)T
cl

v!x�x̂(s)




1

� 1 (6.12)
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Figure 6.4: Closed-loop pole locations with direct state feedback (+), the Luenberger ob-

server (Æ) (left) and the proposed mismatched observer (�) (right)

where Wo(s) =
5�10�4(s+10)

s+5�10�4
is the performance �lter. T cl

v!x�x̂
(s) denotes the closed-loop

transfer function matrix from v(t) to x(t) � x̂(t). Figure 6.4 (right) shows the closed-loop

poles with the designed mismatched observer. Notice that the unstable internal dynamics

has been replaced by a dynamic mode governed by the new stable pole near s = �2. The

input-output dynamics pole at s = �k = �0:1 is still preserved. Two extra poles, which

may be interpreted as observer poles�, are introduced near the input-output dynamics pole.

These two modes associated with the observer and the mode governed by the stable pole

near s = �2 are signi�cantly faster than the original input-output dynamics due to the pole

at s = �k = �0:1. It makes sense to replace the zero dynamics, which does not show up in

the input-output response, by dynamics much faster than the input-output dynamics.

Figure 6.5 (a) and (b) show the output response (y) and internal mode responses (x1 and

x2) to a unit step input for the designed mismatched observer. The dashed line in (a)

shows the ideal response (Eq. (6.9)). Notice that this plant is a reverse reaction plant. Yet,

the optimized observer feedback system approximates the ideal response well, although it

�Since the separation principle does not apply, it is not strictly correct to call them observer poles.
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modes, x1 (\x1") and x2 (\x2"), and their estimates, x̂1 (\x1hat") and x̂2 (\x2hat") (right),

when the designed observer is applied.

cannot remove the reverse reaction completely.

6.5 Application Example II: Application to Lateral Control

of HDVs

6.5.1 Model Description

This section considers the application of the feedback linearization control scheme to the

lateral motion of a single-unit HDV. See Section 3.7.1 for an overview of lateral control of

HDVs. The controller design is based on the linearized model of lateral motion of a single-

unit HDV (tractor-semitrailer type) presented in Section 3.7.2. The linearized lateral motion

model of an HDV is given in Eq. (3.55). Recall that the system matrix, D, in a function of v

(longitudinal velocity of the vehicle). The longitudinal velocity of the vehicle is measurable

or easy to estimate. Since it is well known that the variation of the vehicle velocity has a
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signi�cant e�ect on the vehicle dynamics (Patwardhan et al. [85]), several \gain-scheduled"

controllers to cancel the velocity-dependent terms in the lateral dynamics of the vehicle

have been proposed in the literature (see Section 3.7.1). This is a strong motivation to

apply the feedback linearization control scheme to the lateral control problem of HDVs.

Note that the input signal to the feedback linearization controller is de�ned as follows:

ys = yr + ds�r =: C1q (6.13)

where C1 = [ 1 ds 0 ] and ds is a constant called the \look-ahead" distance (see Sec-

tion 5.4.2). Here, ds is set to 8m. The lateral displacement of the tractor's center of

gravity, yr, and the yaw angle of the tractor relative to the road, �r, are measured.

6.5.2 Controller Design

The control objective is to keep the lateral tracking error at the tractor center of gravity

and the o�-tracking error at the rear of the trailer to be small in lane-following maneuvers.

The objective of applying the feedback linearization controller to lateral control of the HDV

model is to cancel all terms that are dependent on the longitudinal velocity, v, such that

the desired disturbance-displacements dynamics can be obtained for any velocity.

First note that only A22 is dependent on v in Eq. (3.55). The feedback linearization con-

troller (6.4) was �rst designed. If all states variables of the plant are assumed available,

then the closed-loop input-output dynamics is given by Eq. (6.5). The controller gains,

(k1; k2; k3), were designed such that Eq. (6.5) gave the desired input-output dynamics. One

of the simplest algorithms for the tuning of controller parameters is pole assignment. For

vehicle control, the robustness against modeling uncertainties or parametric perturbations
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is generally a more important issue rather than transient response performance. Note that

the robustness of the entire closed-loop system is more likely determined by the choice of the

controller gains of the feedback linearization controller, not the choice of the state observer.

The tuning objective of the controller gains, (k1; k2; k3), is given as follows:

Find K = (k1; k2; k3) such that










Wp(s)T

cl

d!ys
(s)

Wu(s)T
cl

d!Æ
(s)










1

� 1 (6.14)

where T cl

d!ys
denotes the closed-loop transfer function from the disturbance d to ys, and

T cl

d!Æ
denotes the closed-loop transfer function from d to the control input Æ (see Figure 6.6).

Wp(s) is the performance �lter, which speci�es the desired dynamics of T cl

d!ys
(s). Wu(s) is

the uncertainty �lter that is designed based on the \acceptable" range of model uncertain-

ties. This problem formulation is essentially the same as the one presented in Section 3.7.

The performance �lters, Wp(s) and Wu(s), are designed in the similar way as presented in

Section 3.7, and thus the details of their design procedure are not repeated. They are given
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as follows:

Wu(s) =
9:8s2 + 19:002s + 13:248

s2 + 24:090s + 13:380

Wp(s) =
s+ 1

200s + 0:002
: (6.15)

The problem (6.14) can be solved by using the H1 optimization algorithm of �xed-structure

controllers presented in Section 3.3. The optimal set of controller gains, (k1; k2; k3) =

(4:3294; 3:2391; 1:7443), achieved the closed-loop H1 gain of 1.00098.

6.5.3 Observer Design

For this problem, the internal dynamics that arises when the Luenberger state observer is

applied is stable. It has, however, two poorly damped internal modes, which deteriorate

the closed-loop output responses especially in perturbed conditions. The mismatched state

observer is designed such that the closed-loop system does not have the undesirable internal

dynamics.

The mismatched observer is designed to meet the internal stability requirement and the

H1 performance requirement (6.6) with the following performance �lter:

Wo(s) =
s+ 2

0:05(s + 0:002)
(6.16)

The designed observer, Co(s), is eighth order and achieves the closed-loop H1 gain (6.6) of

1.162. Note that the order of the plant is six. The standard full-order H1 control synthesis

algorithm gives the controller of the same order as the combined system of the plant,

the controller, and the performance �lter. Figure 6.7 shows frequency responses of state

estimation error dynamics, T cl

_�d!x�x̂
. The dashed line represents the frequency response of
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Figure 6.7: Frequency responses from disturbance input, _�d, to estimation error vector,

e(t) := x(t) � x̂(t) (solid lines). The dashed line represents the inverse frequency response

of the performance �lter, Wo(s).

the inverse of Wo(s).

Since the design of the controller parameters, (k1; k2; k3), was based on the assumption of

direct state feedback, the performance requirements given in Eq. (6.14) may not be satis�ed

when the designed observer, Co(s), is implemented. However, by properly designing the

estimation error dynamics of the observer, Co(s), the control performance of the entire

closed-loop system can be expected to become \close" to the direct state feedback case.

6.5.4 Simulation Results

Time-domain simulations were conducted to show the closed-loop performance of the de-

signed feedback linearization controller andH1 observer. The same road curvature scenario

as the one given in Section 3.7.5 was used. Figure 6.8 shows the simulation results for the

nominal condition and two perturbed conditions. Figure 6.9 shows state estimation errors

corresponding to Figure 6.8. The maneuver was accomplished with an overshoot from the
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lane centerline less than 40 cm in all the cases. It can be observed that the designed feed-

back linearization controller gives more stable responses in a wider range of longitudinal

velocities than the time-invariant MISO PI controller designed in Section 3.7, or the time-

invariant H1 controllers presented by Wang and Tomizuka [113] and Mammar [72]. The

designed controller and observer gave smooth responses even when parameter perturbations

on m2 and � were introduced.

Figures 6.10 and 6.11 show the comparison between the direct state feedback case (i.e. all

state variables of the plant are assumed available) and the case where the designed mis-

matched observer is used. Figure 6.10 shows the state responses in both cases under the

perturbed condition (v = 5 m/s, � = 0:6, m2 = 5000 kg). Figure 6.11 shows the closed-loop

pole locations of each system. It can be seen that the closed-loop system with direct state

feedback has the mode governed by the poles almost on the imaginary axis, which makes

the output responses intolerably oscillating. On the other hand, the mismatched observer

replaces those undamped modes by the modes governed by the poles near (�0:1 � 0:5j),

and thus it shows much more stable responses.
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Figure 6.8: Closed-loop simulations under the nominal condition (solid: v = 18m/s, � = 0:8,

m2 = 10670 kg) and two perturbed conditions (dashed: v = 25 m/s, � = 1:0, m2 = 24000 kg)

(dotted: v = 5 m/s, � = 0:6, m2 = 5000 kg)
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Figure 6.9: State estimation errors corresponding to Figure 6.8
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Figure 6.10: The closed-loop responses of ys(t) with direct state feedback (dashed) and the

designed mismatched observer (solid) under the perturbed condition ( v = 5 m/s, � = 0:6,

m2 = 5000 kg)
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designed mismatched observer (�) under the same conditions as in Figure 6.10
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6.6 Summary

The major problem of the feedback linearization control scheme is the stability of the in-

ternal dynamics, which arises when the relative degree of the plant is less than its order.

When the Luenberger state observer is applied for state estimation, the internal dynamics

is completely preserved. This chapter presented the design methodology of a state observer

that not only provides the controller with good estimation of the plant states, but also

stabilizes the entire closed-loop system.

By applying the proposed mismatched observer, the internal dynamics becomes observable

from the output and a�ects the input-output dynamics since the separation principle no

longer applies. By replacing the unstable internal dynamics by signi�cantly faster modes,

however, the e�ect of the new poles on the closed-loop input-output dynamics can be min-

imized. Two application examples were presented. In the second example, the proposed

approach was applied to the lateral control problem of HDVs. It was veri�ed by numerical

simulations that the proposed controller and observer structure showed favorable responses

in a wide range of longitudinal velocities of the vehicle.
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Chapter 7

Conclusions and Future Research

7.1 Conclusions

The LMI-based H1 controller synthesis theory guarantees that if the controller is allowed

to have the same order as the plant, and every system matrix of the controller is freely

tunable, then the H1 optimization problem can be solved by convex optimization, and the

global optimum can be numerically found in quite an eÆcient and reliable manner. A crit-

ical limitation of the LMI-based H1 optimization algorithm is that it allows no additional

constraint to be imposed on the problem; the closed-loop H1 norm constraint must be the

only constraint imposed on the problem in order for it to be globally solvable by convex op-

timization. This dissertation have studied an extension of the LMI-based H1 optimization

algorithm to the problems that cannot be parameterized as a convex optimization problem.

Speci�c contributions of this dissertation are on: 1) H1 and scaled-H1 optimization of



174

�xed-structure controllers, 2) rank minimization approach for solving BMI problems with

random search, 3) H1 optimization of Luenberger state observers, and 4) H1 optimization

of mismatched observers. Each contribution is summarized below.

H1 and Scaled-H1 Optimization of Fixed-structure Controllers

This dissertation �rst proposed an algorithm to solve the H1 optimization problem of

�xed-structure controllers via the reduced-order H1 controller synthesis. The proposed

algorithm starts from the transformation of the �xed-structure H1 controller optimization

problem into an H1 optimization problem of a static output feedback controller. Then, the

cone complementarity linearization algorithm is used to locally solve the H1 optimization

problem of a static output feedback controller. The proposed approach is a local search

algorithm and, therefore, there is no guarantee that it �nds the global optimum. It per-

forms, however, excellent in many practical applications. An analogous approach can be

also applied to scaled-H1 optimization problems, which are often used as an approximation

of �-synthesis problems for mixed real/complex model uncertainties.

Based on the proposed H1 optimization algorithm for �xed-structure controllers, this dis-

sertation demonstrated a tuning method of controller parameters to explicitly design fre-

quency responses of the closed-loop system. The proposed approach o�ers an intuitive and

eÆcient way to re-tune controller parameters, which were �nely tuned by an expert engineer,

and improve the control performance. The following three practical application examples

were presented: 1) the tuning of a SISO PID controller for head positioning of a magnetic

hard disk drive (HDD), 2) the tuning of a discrete-time observer feedback controller for head

positioning of an HDD, and 3) the tuning of a MISO PI controller for the lateral control

of an automated heavy-duty vehicle (HDV). The e�ectiveness of the proposed re-tuning
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method was demonstrated by simulation and experimentation.

Rank Minimization Approach for Solving BMI Problems with Random Search

Secondly, this dissertation proposed a novel local search approach for solving general BMI

problems. The BMI framework o�ers an uni�ed approach to formulate a general class of

H1 optimization problems with arbitrary constraints or additional optimization objectives.

The proposed algorithm is based on the SDP relaxation approach to BMI problems and the

linearization-based local search algorithm, which is analogous to the algorithm employed to

solve reduced-order H1 controller synthesis problems. The direct applicability of a random

search is also a strong advantage of the proposed approach.

Four numerical experiments were conducted to show the search performance of the pro-

posed approach. Although its performance to �nd the global solution was not satisfactory

in some cases, it can be at least used to improve the controller performance by applying

the \path-following" approach. Considering that none of global search algorithms for BMI

problems are polynomial-time algorithms due to the NP-hardness of BMI problems, the

proposed algorithm is more practical than any existing global search approaches from the

viewpoint of the computational eÆciency. It is more reliable than conventional, simpler

local search algorithms from the viewpoint of the likelihood of �nding the global solution.

H1 Optimization of Luenberger State Observers

The design method of Luenberger state observers based on H1 optimization was presented.

The conventional formulation of H1-optimal state observers does not allow the augmen-

tation of dynamic weightings in the optimization objective, since it makes the problem a

nonconvex optimization problem. It was shown that the proposed �xed-structure H1 con-
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troller optimization algorithm could be applied to such cases in a straightforward manner.

The proposed approach was applied to the design of fault detection �lters for lateral control

of automated passenger vehicles. The simulation results showed the e�ectiveness of the pro-

posed tuning method to obtain desirable estimation error dynamics of dedicated observers.

H1 Optimization of Mismatched State Observers

The H1 optimization of Luenberger state observers was extended to the design of more gen-

eral mismatched state observers, and a novel application of H1-optimal mismatched state

observers to the observer-based feedback control was presented. The feedback linearization

control scheme is simple but quite e�ective for the control of an LPV plant. When the

Luenberger-type state observer is used, the feedback linearization control scheme may gen-

erate undesirable internal dynamics. This dissertation proposed to tune the mismatched

state observer by using H1 optimization such that it not only provides good estimation

of state variables of the plant, but also stabilizes the overall closed-loop system. As an

application example, the proposed approach was applied to lateral control of HDVs. It

was veri�ed by numerical simulations that the proposed controller and observer structure

showed favorable responses in a wide range of longitudinal velocities of the vehicle.

7.2 Future Research

Numerical optimization in controller design has been an active research area in control

engineering. The ultimate goal on this subject is to develop a \black box" architecture

that computes the optimal solution from any design constraints and objectives provided by
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the designer. There still remain unsolved problems in optimal control in spite of intense

research for decades. For example, the classical LMI-based H1 controller optimization the-

ory can be applied only to special cases where the controller is allowed to have the same

order as the plant, and every system matrix of the controller is freely tunable. As discussed

in this dissertation, any additional constraints make the problem a nonconvex optimization

problem, and thus it cannot be solved by the conventional LMI-based approach.

The BMI formulation presented in Chapter 4 has been studies as a tool that has a potential

to extend the conventional optimal control theory to more general problems. Although nu-

merous algorithms have been proposed to solve general BMI problems in the literature, none

of the global search algorithms are suÆciently eÆcient to solve problems of practical size.

Due to the NP-hardness of BMI problems, it is highly likely that there exists no algorithm

that can globally solve general BMI problems in a practical eÆciency. The importance of

solving BMI problems is, however, clear for the extension of optimal control theories. The

following are suggestions for future research directions:

1. Local search approaches. This dissertation proposed a novel algorithm to locally solve

BMI problems in Chapter 4. Due to the NP-hardness of BMI problems, local search

approaches seem more promising for practical applications. The algorithm proposed

in this dissertation may become slow when the problem size is large. More eÆcient

and reliable algorithms must be developed to apply BMI-based approaches to practical

control problems.

2. Speci�c nature of BMI problems. This dissertation proposed an algorithm to solve the

H1 optimization problem of �xed-structure controllers via the reduced-orderH1 con-

troller synthesis. Although the proposed approach is restricted to this speci�c problem
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and cannot be applied to general BMI problems, it often shows better search perfor-

mance than other general-purpose algorithms. Future research must focus more on

the nature of each speci�c problem to develop more eÆcient and reliable global/local

search algorithms.

3. Random search. In recent years, random searches have attracted more attention as

a tool that has a potential to substantially enhance the computational eÆciency. As

shown in this dissertation, the combination of deterministic and nondeterministic ap-

proaches seems promising to improve the eÆciency and reliability of search algorithms.

4. Application to large-scale problems. Numerical optimization approaches o�ers more

advantages when applied to large-scale engineering problems. However, the algorithms

discussed in this dissertation are not suÆciently eÆcient for large-scale problems. In

particular, further research e�ort must be devoted to the development of eÆcient

algorithms for large SDP problems. EÆcient algorithms to solve sparse SDP problems

are also of importance.
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