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Abstract

This paper considers H∞ optimization of Luen-
berger state observers. The conventional formulation
of H∞-optimal state observers does not allow the aug-
mentation of dynamic performance weightings in the
optimization objective, since it makes the problem a
nonconvex optimization problem. We propose an algo-
rithm to locally solve an H∞ optimization problem of
Luenberger state observers by transforming the prob-
lem into an H∞ optimization problem of a static out-
put feedback controller. The proposed approach offers
an intuitive and efficient way to explicitly design the
estimation error dynamics of the observer in the fre-
quency domain. As an application example, the pro-
posed approach is applied to the tuning of fault detec-
tion filters for lateral control of automated passenger
vehicles. Numerical simulations are conducted to show
the effectiveness of the proposed tuning method.

1 Introduction

Optimal state estimation (or filtering) problems
have been studied for decades in parallel with optimal
control problems. In particular, this paper considers
the H∞-optimal state observer and its application to
fault detection filter design.

The H∞-optimal filtering problem was first ad-
dressed in the late-1980s by Elsayed and Grimble [1]
based on polynomial techniques. In 1991, Nagpal and
Khargonekar [2] presented the ARE-based formulation
of H∞-optimal state observers. It was shown that
the H∞ optimization problem of Luenberger state ob-
servers for an LTI (linear time invariant) system could
be, analogous to the H2 optimization case, reparame-
terized as a problem to solve a set of algebraic Ricatti
equations (AREs). However, compared to the popu-
larity that the celebrated Kalman filter (H2-optimal
state observer) has enjoyed, there has not been as many
practical applications of H∞-optimal state observers
reported in the literature.

This paper proposes the application of the
frequency-domain loop shaping approach to the de-
sign of Luenberger state observers. It offers an in-
tuitive and efficient method to explicitly design the

estimation error dynamics in the frequency domain.
For this purpose, the augmentation of dynamic per-
formance weightings in the optimization objective is
crucial. The conventional formulation of H∞ state ob-
servers does not, however, allow the augmentation of
dynamic weightings, since it makes the problem a non-
convex optimization problem. This paper presents an
extension of the conventional H∞ optimization algo-
rithm of Luenberger state observers to more general
problems with dynamics weightings.

It should be noted that nonconvex H∞ optimiza-
tion problems of state observers have attracted more
attention in recent years, mainly from the interest in
the design of robust filters (e.g. [3, 4, 5]). Although
the approach proposed in this paper does not explicitly
deal with the robustness issue, it offers a simple and ef-
fective way to incorporate the designer’s expertise and
understanding of the physical system and design objec-
tives into the observer design.

The remainder of this paper is organized as follows.
Section 2 proposes an algorithm to solve an H∞ op-
timization problem of Luenberger state observers with
dynamic weightings. In Section 3, the proposed ap-
proach is applied to the design of fault detection filters
for lateral control of automated passenger vehicles.

2 H∞ Optimization of Luenberger State
Observers with Dynamic Weightings

The H∞ optimization problem of Luenberger state
observers is formulated as follows. Consider an LTI
system of the following state-space representation:

P (s) : ẋ(t) = Ax(t) +Bu(t) +Bww(t)
y(t) = Cx(t) +Dww(t) (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm1 is the
control input, y(t) ∈ Rp1 is the measured output, and
w(t) ∈ Rm2 denotes the noise or external disturbances.

The Luenberger state observer has the following
structure:

P̂ (s) : ˙̂x(t) = Ax̂(t) +Bu(t) + L(y − Cx̂(t)) (2)

where L ∈ Rn×p1 is the observer gain matrix and
x̂(t) ∈ Rn is the estimated state vector. Notice that
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Figure 1: Block diagram of state estimation error dynam-
ics

the system matrices of the observer coincide with those
of the plant model.

The objective is to optimize the observer matrix, L,
such that the H∞ norm of the transfer function matrix
from the external disturbance, w(t), to the weighted
state estimation error, z(t), is minimized (denote this
transfer function matrix by Tw→z(s)). z(t) is defined
in the s-domain as follows:

z(s) =Wp(s)(x(s)− x̂(s)) (3)

where Wp(s) is a p2 × n weighting transfer function
matrix. The block diagram of Tw→z(s) is shown in
Figure 1.

When the weighting matrix, Wp(s), is a static ma-
trix, i.e. Wp(s) =Wp ∈ Rp2×n, the H∞ problem of the
observer matrix, L, can be reparameterized as an LMI
(linear matrix inequality) problem [6], or equivalently,
a problem to solve a set of AREs shown by Nagpal and
Khargonekar [2].

However, when a dynamic weighting matrix,Wp(s),
is augmented, it can be easily seen that this problem
cannot be rewritten as an LMI problem by using the
variable transformation. When dynamic weights are
augmented, the state observer, P̂ (s), is no longer a full
state estimator, since the state variables of dynamic
weights are not estimated (they do not exist in the
physical system). Notice that the analogous observa-
tion applies to the H∞ synthesis problem of state feed-
back controllers.

We apply the H∞ optimization algorithm for
fixed-structure controllers presented by Ibaraki and
Tomizuka [7] to locally solve this problem. The algo-
rithm proposed in [7] first transforms an H∞ optimiza-
tion problem of fixed-structure controllers into an syn-
thesis problem of a static output feedback controller by
“extracting” tunable controller parameters using linear
fractional transformations (LFTs). This approach can
be straightforwardly applied to the H∞ optimization
problem of Luenberger state observers.

To illustrate the transformation, first consider the
transfer function from w(t) to the state estimation error
vector, e(t) := x(t)−x̂(t), without a dynamic weighting
matrix, Wp(s). By combining the plant dynamics (1)
and the observer dynamics (2), the state estimation
error dynamics is given as follows:

ė(t) = (A− LC)e(t) +Bww(t) . (4)
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Figure 2: Extraction of the observer matrix, L

Then, construct the extended plant model P̃K(s) as
follows (see Figure 2):

ė(t) = Ae(t) +Bww(t)− ξ(t)
z̃(t) = e(t)
ζ(t) = Ce(t) . (5)

It is easy to see that FL(P̃K(s), L) is equal to
the state estimation error dynamics, Tw→e(s), where
FL(P̃K(s), L) denotes the closed-loop transfer function
from w(t) to z̃(t) in Figure 2. When a dynamic weight-
ing matrix Wp(s) is augmented, let PK(s) be the serial
combination of P̃K(s) andWP (s) as shown in Figure 2.
Then, FL(PK(s), L) becomes equal to the transfer func-
tion from w(t) to z(t).

Notice that the observer matrix, L, is a constant
n× p1 full block matrix whose entries are all indepen-
dently tunable. Therefore, the H∞ optimization prob-
lem of the observer matrix, L, can be seen as an H∞
synthesis problem of a static output feedback controller
for the extended plant model, PK(s). Although it is
generally hard to globally solve an H∞ synthesis prob-
lem of a static output feedback controller, the cone
complementarity linearization algorithm proposed by
El Ghaoui et al. [8] can be straightforwardly applied to
locally solve this problem. Although it is a local search
algorithm and thus is not always guaranteed to find
the global minimum, in many practical applications it
performs excellent, as reported in [8] with extensive
numerical examples.

3 Application Example

3.1 Fault Management in Lateral Control of
Automated Vehicles

As an application example in which the frequency-
domain estimation error performance of a Luenberger
state observer is particularly important, the proposed
approach is applied to the design of fault detection fil-
ters for lateral control of automated passenger vehicles.

The design of reliable, fault-tolerant control systems
requires that system failures be detected and identified
such that the system feedback is not excessively cor-
rupted. Fault detection and isolation (FDI) problems
in dynamic systems have been an active research area
in recent years. In particular, this paper focuses on the
state estimator design in model-based fault detection
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schemes (e.g. [9]).
Rajamani et al. [10] developed a complete fault diag-

nostic system for automated passenger vehicles, which
detects and identifies all possible faults in twelve sen-
sors and three actuators (e.g. wheel speed sensor,
throttle angle sensor, magnetometers, brake actuator)
used in lateral and longitudinal control systems of the
vehicle. A bank of state observers, each of which is
based on different combination of sensor outputs, gen-
erates residuals to detect and isolate each possible fault.
This section focuses only on a fault detection scheme for
two sets of magnetometers to measure lateral displace-
ments of the vehicle. It can be seen as a subsystem of a
complete fault diagnostic system. The same approach
can be applied to the tuning of any fault detection fil-
ters.

3.2 Model Description
The design of fault detection filters is based on the

simplified lateral motion model of a passenger vehicle
presented by Hingwe [11, Chapter 3]. Figure 3 shows a
front-wheel steered vehicle model on a curve of radius
Rref . Magnets buried along the highway center lane
are utilized as a reference for the lane following oper-
ation. Magnetometers mounted on the front and rear
bumpers of the vehicle are used to measure the lateral
deviation of the vehicle from the road center line.

The “bicycle model” presented in [11] neglects the
roll and pitch motions in the vehicle and assumes that
the relative yaw angle is maintained small. Under these
assumptions, the lateral motion of the vehicle can be
represented by the following linearized model:

ẋ = Ax+B1δ +B2ε̇d[
yfs

yrs

]
=

[
1 0 df 0
1 0 −dr 0

]
x =: Cx (6)

where x = [ ycg ẏcg εr ε̇r ]T is the state variable
vector: ycg is the lateral displacement of the vehicle’s
center of gravity (CG) relative to the road centerline,
and εr is the yaw angle of the vehicle relative to the road
centerline (See Figure 3). δ is the steering angle and
it is the control input. ε̇d is the yaw rate of the road
frame and is regarded as a disturbance. See [11] for
detailed descriptions of the system matrices, A ∈ R4×4

and B1, B2 ∈ R4×1. yfs and yrs are lateral errors
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measured by magnetometers at the front bumper and
the rear bumper, respectively.

A SISO (single-input single-output) linear controller
was implemented for lateral control of the vehicle in
lane-following maneuvers. The input to the controller
is defined as follows:

ys =
d2 + ds

d1 + d2
yfs +

d1 − ds

d1 + d2
yrs (7)

where ds is constant and can be arbitrarily specified.
The controller, C(s), is essentially given as the com-
bination of a second-order linear lead-lag filter and a
notch filter to account for roll-yaw coupling. It was
successfully implemented on a test vehicle and its con-
trol performance was verified in simulation and experi-
mentation. The closed-loop configuration of the entire
lateral control system is depicted in Figure 4.

3.3 Fault Detection Scheme
Figure 4 includes the fault detection architecture

for magnetometers. The dedicated state observer #1,
P̂1(s), estimates yfs and yrs by using measured yfs and
the steering angle, δ. Denote its estimates by ŷ1

fs and
ŷ1

rs. The dedicated state observer #2, P̂2(s), estimates
the same two variables based on measured yrs and δ.
Denote its estimates by ŷ2

fs and ŷ
2
rs.

The magnetometer fault considered here appears as
an offset on sensor measurements, yfs and yrs. Fur-
thermore, faults are assumed not to occur in both mag-
netometers simultaneously. Two dedicated state ob-
servers, P̂1(s) and P̂2(s), are designed such that the dif-
ferences of their estimates, ŷ1

fs − ŷ2
fs and ŷ

1
rs − ŷ2

rs, are
kept smaller than the prescribed constant levels dur-
ing non-faulty operations. Suppose that, for example,
a fault occurred in the front sensor. Then, the dedi-
cated observer #1 can no longer estimate the correct
lateral errors, since it is based on faulty sensor mea-
surement, while the observer #2 is not affected by this
fault. Therefore, by monitoring the difference of each
observer’s estimates, one can detect the fault. This is



a basic idea of the dedicated observer based fault de-
tection scheme.

A critical issue in the design of such dedicated ob-
servers is the robustness against external disturbances
and model uncertainties. In particular, the most sig-
nificant disturbance to the lateral dynamics of the ve-
hicle is the centering force at curved roads, which acts
mostly as a static disturbance. Since a magnetometer
fault also appears as a static offset, steady-state esti-
mation errors of dedicated observers must be small to
distinguish faults from static disturbances.

Suryanarayanan and Tomizuka [12] proposed a fault
tolerant controller for lateral control of automated pas-
senger vehicles, which guarantees the stability of the
closed-loop system even when one of magnetometers is
lost. It consists of two dedicated state observers and
the state feedback based on their estimates. The archi-
tecture of dedicated observers is exactly the same as the
one shown in Figure 4. Therefore, the fault detection
scheme presented in this section can be implemented
without adding any redundancy on this fault tolerant
control architecture.

3.4 Design Procedure of Dedicated Observers

Design Objectives: The dedicated state observers,
P̂1(s) and P̂2(s), have the following Luenberger-type
state observer structures:

P̂1(s) : ˙̂x1 = Ax̂1 +B1δ + L1(yfs − ŷ1
fs)[

ŷ1
fs

ŷ1
rs

]
= Cx̂1 ,

P̂2(s) : ˙̂x2 = Ax̂2 +B1δ + L2(yrs − ŷ2
rs)[

ŷ2
fs

ŷ2
rs

]
= Cx̂2 , (8)

The observer system matrices, (A,B1, C), coincide
with those of the plant model given in Eq. (6).

First, the observer matrices, L1 and L2, were ob-
tained by using the Kalman filter design, as demon-
strated in [12]. Denote these Kalman filters as P̂ old

1 (s)
and P̂ old

2 (s). When P̂ old
1 (s) and P̂ old

2 (s) are used, fre-
quency responses of estimation error dynamics from
the external disturbance, ε̇d, to the estimation error,
efs := yfs−ŷfs and ers := yrs−ŷrs, are given as shown
in Figure 5 (dashed lines). Denote these transfer func-
tions by Tε̇d→efs

(s) and Tε̇d→ers
(s), respectively.

The figure implies that P̂ old
1 (s) and P̂ old

2 (s) are not
effective for the fault detection purpose by the follow-
ing reasons: 1) the steady state gains of error dynamics
are not sufficiently small, especially that of P̂ old

2 (s) in
the Tε̇d→efs

(s) dynamics (the upper-left figure), and
2) the differences of steady state errors of P̂ old

1 (s) and
P̂ old

2 (s) are not sufficiently small, especially that in the
Tε̇d→efs

(s) dynamics (the upper-left figure). Since the
fault detection scheme is based on the differences of
two observers’ estimates, they must be small during

non-faulty operation.
Time domain simulations, which will be presented

in Section 3.5, also show that P̂ old
1 (s) and P̂ old

2 (s) are
not effective for the fault detection purpose. The objec-
tive of this section is to re-tune the observer matrices,
L1 and L2, such that both observers show desirable
estimation error dynamics for more accurate fault de-
tection.

Design of P̂2(s): It is easy to see that the problem to
optimize L1 and L2 at the same time cannot be trans-
formed into a static output feedback synthesis problem
as shown in Section 2. Therefore, L1 and L2 are op-
timized in an alternating manner to obtain a locally
optimal solution, similarly as shown in [6, Section 3.6]
for fixed-structure controller optimization cases.

First, consider the tuning problem of L2, with L1

fixed to the Kalman filter gain obtained above. The
tuning objective is to reduce the gain of estimation
error dynamics especially at lower frequencies, with-
out sacrificing the estimation stability. It can be in-
terpreted as an H∞ optimization problem as follows:

min
L2

∥∥∥∥ Wp1(s)T 2
ε̇d→efs

(s)
Wp2(s)T 2

ε̇d→ers
(s)

∥∥∥∥
∞

(9)

where T 2
ε̇d→efs

(s) and T 2
ε̇d→ers

(s) denote the estimation
error dynamics of the dedicated observer #2, P̂2(s).
Wp1(s) and Wp2(s) are dynamic performance weight-
ings, which specify the desired shapes of |T 2

ε̇d→efs
(jω)|

and |T 2
ε̇d→ers

(jω)|, respectively. Wp1(s) and Wp2(s)
are designed based on actual frequency responses of
T 2

ε̇d→efs
(s) and T 2

ε̇d→ers
(s) when the Kalman filter,

P̂ old
2 (s), is used, such that the solution of the prob-

lem (9) achieves better performance than the Kalman
filter. The analogous “loop-shaping” technique to de-
sign performance filters in the optimization setting
is widely used in the H∞ controller design (see [7]).
“Wp1” and “Wp2” in Figure 6 represent the inverse fre-
quency responses of Wp1(s) and Wp2(s), respectively.

All computations to solve the problem (9) have
been carried out on MATLAB by using LMI Control
Toolbox [13]. The (sub-)optimal solution, denoted by
P̂new

2 (s), achieves the H∞ norm (9) of 1.425, while
P̂ old

2 (s) gives 15.91. Figure 6 compares the frequency
responses of estimation error dynamics of P̂ old

2 (s) and
P̂new

2 (s). The gain reduction at lower frequencies can
be clearly observed in both error dynamics.

Design of P̂1(s): Then, consider the tuning prob-
lem of L1, with L2 fixed to the value obtained above.
Since the fault detection scheme is based on estimation
gaps of two observers, they must be small during non-
faulty operations. Considering this requirement, the
optimization objective for L1 is given as follows:

min
L1

∥∥∥∥ Wp1(s)(T 1
ε̇d→efs

(s)− T 2
ε̇d→efs

(s))
Wp2(s)(T 1

ε̇d→ers
(s)− T 2

ε̇d→ers
(s))

∥∥∥∥
∞

(10)
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where T 1
ε̇d→efs

(s) and T 1
ε̇d→ers

(s) denote the estimation
error dynamics of the dedicated observer #1, P̂1(s). In
this problem, the performance weightings, Wp1(s) and
Wp2(s), are set to Wp1(s) =Wp2(s) = 1.

Since P̂2(s) is fixed, the problem (10) can be also
transformed to an H∞ optimization problem of a static
output feedback gain matrix. The (sub-)optimal solu-
tion, denoted by P̂new

1 (s), achieves the H∞ norm (10)
of 0.400, while P̂ old

1 (s) gives 0.626. Figure 5 com-
pares estimation error dynamics of the Kalman filters,
P̂ old

1 (s) and P̂ old
2 (s) (dashed lines), and the re-tuned

observers, P̂new
1 (s) and P̂new

2 (s) (solid lines). In Fig-
ure 5 (a), it can be observed that the steady state error
of P̂2(s) was reduced by the tuning, while that of P̂1(s)
was slightly increased to reduce the gap between two
observers. Figure 5 (b) shows that the steady state er-
rors of two observers were both significantly reduced
and, therefore, the difference of steady state errors was
also reduced.

Since no significant improvement was achieved by
further iterations, the design procedure was terminated
at this point.

3.5 Simulation Results
Time domain simulations were conducted to show

the effectiveness of the proposed tuning method of ded-
icated state observes. Figure 7 shows simulated esti-
mation responses of the Kalman filters, P̂ old

1 (s) and
P̂ old

2 (s). A fault occurs in the front magnetometer at
the distance 220 m, when the vehicle is on a curved
road of radius 800 m. The fault results in an offset
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Figure 6: Comparison of estimation error dynamics of the
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of 0.05 m in the yfs measurement. The plant model
is assumed to be in the nominal condition: M (sprung
mass of the vehicle)= 1740 kg, µ (road adhesion coeffi-
cient)= 0.85, and v (longitudinal velocity of the vehi-
cle)= 15m/s (=54 km/hr).

The estimation gap of two observers, ŷ1
fs − ŷ2

fs and
ŷ1

rs−ŷ2
rs, are shown in Figure 8. It can be observed that

the steady-state amplitude of ŷ1
fs − ŷ2

fs does not differ
much before and after the fault occurred. Therefore,
the fault cannot be detected by monitoring ŷ1

fs − ŷ2
fs.

This is because the steady state estimation error of
each observer is too large due to static disturbances
even under non-faulty operations.

Then, the fault detection performance of the re-
tuned dedicated observers, P̂new

1 (s) and P̂new
2 (s), was

evaluated by using the same simulation scenario. Fig-
ure 9 shows the estimation gap profiles, ŷ1

fs − ŷ2
fs

and ŷ1
rs − ŷ2

rs, when P̂new
1 (s) and P̂new

2 (s) are used.
The steady state errors between two observers became
smaller during non-faulty operations, and thus the fault
can be easily detected by setting the threshold values
at 0.02 ∼ 0.04m for both of |ŷ1

fs − ŷ2
fs| and |ŷ1

rs − ŷ2
rs|.

It was also verified by simulation that the designed ob-
servers can detect this fault even when measurement
noise is added to the simulation model.

Finally, it should be noted that the present fault
detection scheme is by nature robust against model un-
certainties to some extent, although the robustness is-
sue was not explicitly considered in the design of ded-
icated observers. Figure 10 shows the simulation re-
sults in two perturbed conditions (“p1”:M = 2, 610 kg,
µ = 1.0, v = 20m/s) and (“p2”: M = 870 kg, µ = 0.5,
v = 10m/s). P̂new

1 (s) and P̂new
2 (s) can produce similar

residuals at steady state even in perturbed conditions.

4 Conclusion

The conventional formulation of H∞-optimal state
observers does not allow the augmentation of dynamic
performance weightings in the optimization objective,
since it makes the problem a nonconvex optimization
problem. This paper proposed an algorithm to locally
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yrs: measured lateral errors, ŷ1
fs and ŷ1

rs: esti-

mation by P̂ old
1 (s), ŷ2

fs and ŷ2
rs: estimation by

P̂ old
2 (s))
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Figure 8: The estimation gap profiles, ŷ1
fs− ŷ2

fs (left) and
ŷ1

rs − ŷ2
rs (right), corresponding to Figure 7

solve this problem by transforming the problem into
an H∞ optimization problem of a static output feed-
back gain matrix. Based on the proposed algorithm,
this paper presented an intuitive and efficient way to
explicitly design the estimation error dynamics of the
observer in the frequency domain.

As an application example, the proposed approach
was applied to the design of fault detection filters for
lateral control of automated passenger vehicles. For
accurate fault detection in vehicle control systems, the
robustness of the dedicated observers against external
disturbances of low frequencies is particularly impor-
tant. The proposed approach was applied to re-tune
the observer gain matrices of two dedicated observes.
Simulation results showed the effectiveness of the pro-
posed re-tuning method.
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