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A b s t r a c t  

This paper presents the rank minimization approach to 
solve general bilinear matrix inequality (BMI) problems. 
Due to the NP-hardness of BMI problems, no proposed 
algorithm that  globally solves general BMI problems is 
a polynomial-time algorithm. We present a local search 
algorithm based on the semidefinite programming (SDP) 
relaxation approach to indefinite quadratic programming, 
which is analogous to the well-known relaxation method 
for a certain class of combinatorial problems. Instead of 
applying the branch and bound (BB) method for global 
search, a linearization-based local search algorithm is em- 
ployed to reduce the relaxation gap. Furthermore, a ran- 
dom search approach is introduced along with the deter- 
ministic approach. Four numerical experiments are pre- 
sented to show the search performance of the proposed 
approach. 

1 I n t r o d u c t i o n  

This paper considers an algorithm to solve BMI (bilin- 
ear matrix inequality) problems of the following form (Sa- 
fonov et al. [1]): 

Find x -  {zi}i=l. . . ,N E ~N 
N N N 

such that  F0 + ~ xiFi + ~ ~ xixjFij  -< 0 (1) 
i=1 i=1 j = l  

where F0, F~ (i - 1,--. ,N), and F~j (i , j  - 1, . . . ,N) are 
m × m real, constant symmetric matrices. A -< 0 denotes 
that  a matrix A is symmetric and negative definite. Sim- 
ilarly, A _ 0, A ~- 0 and A ___ 0 denote that  a symmetric 
matrix A is negative semidefinite, positive definite and 
positive semidefinite, respectively. 

General BMI problems are not convex optimization 
problems due to the bilinear terms in the constraint (1) 
and, therefore, can have multiple local solutions. BMI 
problems are proven to be NP-hard (Toker and Ozbay [2]), 
which means that  any algorithms that  globally solve gen- 
eral BMI problems are quite likely non-polynomial time 
algorithms. 

In recent years, considerable research efforts have been 
devoted to the development of algorithms to solve general 
BMI problems. Most of the algorithms found in the liter- 
ature that claim the applicability to control-related prob- 
lems of practical size are local search algorithms. One of 
the simplest approaches is an iterative algorithm solving 

alternating LMIs at each step, making use of the bilin- 
ear property of the problem. Another simple approach 
is based on the linearization; under an assumption of 
small search steps, one can approximate a BMI problem 
by an SDP (semidefinite programming) problem by using 
the first-order perturbation approximation [3]. The SDP 
problem can be written in the following canonical form: 

Find x - { x i } i = l ,  ,NE[R N 
N 

such that  Fo + ~ xiFi -< 0 (2) 
i=1 

where F0, Fi (i = 1,.--,N) E [R "~×'~ are constant sym- 
metric matrices. SDP problems are convex optimization 
problems that  can be solved in a polynomial time by us- 
ing well-developed interior point algorithms (e.g. [4]). 

It is, however, highly likely for such local search ap- 
proaches to fail to reach the global optimum due to the 
nonconvex nature of BMI problems. Goh et al. [5] showed 
this aspect by using a small BMI problem as an example 
(see Section 3.1). 

Most of global search algorithms found in the lit- 
erature are variations of the Branch and Bound (BB) 
method based on different formulations of BMI problems 
[5, 6, 7, 8, 9, 10]. Although the computational efficiency is 
a major focus for all of those works, none of global search 
algorithms are polynomial-time algorithms due to the NP- 
hardness of BMI problems. Therefore, their applicability 
to problems of practical size is questionable. 

The approach proposed in this paper is outlined as fol- 
lows. First, it is shown that  general BMI constraints can 
be reformulated as a combination of LMI constraints and 
a rank constraint. If the rank constraint is dropped, the 
problem becomes a convex optimization problem, whose 
optimal objective value gives a lower bound for the orig- 
inal BMI problem. This approach is analogous to the 
well-known SDP relaxation approach to a certain class of 
combinatorial problems. Although the approximate solu- 
tion of the relaxed problem can be used in BB methods, 
this paper employs a linearization-based local search al- 
gorithm to reduce the relaxation gap. The linearization- 
based rank minimization approach is analogous to the 
algorithm presented by E1 Ghaoui et al .[ l l]  to solve 
reduced-order H ~  controller synthesis problems. 

Furthermore, a random search approach can be 
straightforwardly applied along with the deterministic ap- 
proach. In recent years, random searches have attracted 
more attention in the field of nonconvex optimization as 
a tool that  has a potential to substantially enhance the 
computational efficiency [12, 13]. The proposed formula- 
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tion of BMI problems is propitious to the introduction of 
random search approaches. 

The proposed approach is a local search algorithm and, 
therefore, there is no guarantee that it finds the global so- 
lution. It is, however, based on a completely different for- 
mulation of BMI problems from conventional, simpler lo- 
cal search algorithms, and it is claimed that the proposed 
approach can more likely find the global solution than 
conventional local search approaches in practice. Consid- 
ering that any global search algorithm is a non-polynomial 
time algorithm due to the NP-hardness of BMI problems, 
the proposed approach is more practical than any existing 
global search algorithm from the viewpoint of the compu- 
tational efficiency. It is more reliable than conventional, 
simpler local search algorithms from the viewpoint of the 
likelihood of finding the global solution. 

The practical importance of solving BMI problems has 
been particularly recognized in the field of optimal con- 
troller design. For example, it is well known that the 
Ho~ optimization problem of full-order controllers can 
be formulated as an SDP problem (Gahinet and Apkar- 
ian [14]). A critical limitation of the LMI-based Ho~ con- 
troller synthesis is that it allows no additional constraint 
to be imposed on the problem; the closed-loop H ~  norm 
constraint must be the only constraint imposed to the 
problem in order for it to be globally solvable by convex 
optimization. The BMI framework offers a unified ap- 
proach to formulate "generalized" H~  optimization prob- 
lems with arbitrary constraints. See e.g. [5] for further 
details. 

The remainder of this paper is organized as follows. 
The proposed algorithm is presented in Section 2. Sec- 
tion 3 presents four numerical experiments to show the 
search performance of the proposed approach. 

2 Rank M i n i m i z a t i o n  Approach  for Solv ing  B MI 
P r o b l e m s  wi th  R a n d o m  Search 

2.1 Rank M i n i m i z a t i o n  A p p r o a c h  for Solv ing  
B M I  P r o b l e m s  

This paper considers the problem given in Eq. (1). The 
problem in fact belongs to the class of indefinite quadratic 
programming, which includes BMI problems. First, the 
following lemma shows that the problem (1) can be equiv- 
alently rewritten as a rank minimization problem subject 
to LMI constraints. 

L e m m a  1 The indefinite quadratic programming prob- 
lem (1) is equivalent to the .following problem: 

Find x -  { x i } i = l - . . N  E [R N and 

X -  {Xij}i , j=l- . .N E [~N×N 

N N N 

such that Fo -+- E x,t F,~ ÷ E ~ X.t j Fi j -4 0 
i = 1  i = 1  j = l  

X x  
a T 1  ~ 0  

(3) 

(4) 

r a n k ( X ) -  1. (5) 

The above problem can be seen as a minimization 
problem of the objective function, rank (X) ,  under LMI 
constraints (3) and (4). The rank minimization problems 
are generally quite hard to solve (a special case which 
can be equivalently transformed into an SDP problem 
was discussed by Mesbahi [15t). The rank minimization 
problems appear, however, in many control-related opti- 
mization problems such as reduced-order H~  controller 
synthesis and scaled-H~ optimization with constant scal- 
ing matrices [16]. Considerable research efforts have been 
devoted to develop algorithms to solve them. Most of the 
algorithms are local search algorithms, either by coordi- 
hate descent approaches (e.g. [17]) or the linearization ap- 
proach [111. We employ an analogous linearization-based 
local search approach to solve the problem (3)N(5). 

Since the constraint (4) assures that t r ( X ) -  xTx  k 0 
and t r ( X )  - xTx  -- 0 if and only if X - xx  7, there exists 
a solution, (x, X), that satisfies the constraints (3)N(5)if 
and only if the optimal value of the following problem is 
z e r o :  

min t r ( X ) -  xTx  subject to (3) and (4) (6) 
x , X  

where t r ( X )  denotes the trace of a square matrix X. By 
linearizing the objective function, the following descent 
method to find a local optimum of the problem (6) is 
obtained. 

A l g o r i t h m  1 

1. Find a feasible set (x (°), X (°)) that satisfies the con- 
straints (3) and (4). Set k - 1. I f  there is no feasible 
solution, then the problem is infeasible. 

2. Solve the following convex optimization problem for 
X (k) E ~N and X (~) E ~NxN:  

min t r (X (~)) - 2x (~-1) Tx(~) 
x(~) ,X(k) 

subject to (3)and (4). (7) 

3. Set k = k + 1 and repeat Step 2 until convergence. 

It is easy to show that this algorithm converges. 

L e m m a  2 The sequence: 

• - t r  (X (k)) - 2x (k-l) Tx(~)+ x (~-1) TX(k-1),  (8) tk 

where k = 1 ,2 , . . . ,  is bounded below by zero and non- 
(k = 1 , 2 , . . . )  

verges to some value, topt >__ O. Equality holds if  and only 
if  X (k) = x(k)x (~) T as k --~ c~. 
The proof is straightforward and thus omitted for the 
brevity. 

2.2 S D P  Re laxat ion  A p p r o a c h  to B M I  Prob lems  
and Combinator ia l  P r o b l e m s  

Consider the following minimization problem subject 
to BMI constraints" 

N N N 

min 3' such that F0+ E xiFi+ E E x i x jg i j -3" I  ~ 0 
xEP~ N 

i = 1  i = 1  j = l  

(9) 
where f denotes the identity matrix of the same size as 
F0. Then, compare with the following problem: 
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min 7 such that  
x E R N  X E R N  × N 

N N N 

i = 1  i=1 j--1 

,10, 

Notice that  the above problem is an SDP problem 
and, therefore, can be globally solved by convex optimiza- 
tion. From Lemma 1, it is clear that  the optimal solution 
for the problem (10) gives a lower bound for the origi- 
nal BMI problem (9) (Notice that  if the rank constraint, 
rank(X) - 1, is added to the problem (10), then the 
problem (10) becomes equivalent to the problem (9)). 

An analogous relaxation approach is well known to find 
an approximate solution for a certain class of combinato- 
rial optimization problems. The Max-Cut problem is to 
find a cut of maximum total weight in an edge-weighted 
undirected graph (see e.g. [18]). This problem is one of the 
original NP-complete problems and thus hard to solve. It 
can be formulated as an indefinite quadratic problem in 
binary variables as follows: 

m a x x T Q x + 2 b T x + d  subject to x E { -1 ,  1} N (11) 
21 

where Q - QT E [R N×N and b,d E NN are given. Using 
2 1 the fact that  x E { - 1 , 1 }  N can be written as xi - 

(i - 1 , . . . ,N),  the above problem can be equivalently 
transformed to: 

max t r (QX) + 2bTx + d subject to 
x E R N  X ~ R N X  N 

1 _;L-0, diag(X) -- e, r a n k ( X ) - 1  (12) 

where e E N N is the vector of all ones. If the rank con- 
straint in the problem (12) is dropped, then the problem 
can be solved by convex optimization, and it gives an 
upper bound for the original problem (11). This SDP 
relaxation approach method proposed by Goemans and 
Williamson [19] is widely accepted as the best current ap- 
proximation approach to the Max-Cut problem. Goemans 
and Williamson [19] proposed a randomized algorithm to 
recover the optimal solution from the approximate solu- 
tion (x, X). It is guaranteed to produce a solution with 
the expected value at worst 14% smaller than the true 
optimum. 

The clear similarity of the formulation (12) of the Max- 
Cut problem and the formulation (3)N(5) of the BMI 
problem implies that  the analogous SDP relaxation ap- 
proach also offers a good approximation for BMI prob- 
lems. The mathematical  justification of the SDP relax- 
ation approach to BMI problems can be found in Kon- 
ishi and Shin [20], where three relaxation approaches 
(the Lagrange relaxation, the relaxation using noncon- 
vex quadratic inequalities, and the SDP relaxation) are 
applied to the problem (1), and it is shown that  the SDP 
relaxation gives the best lower bound among them. This 
strongly justifies the approach presented in this paper. 

Notice that the application of the SDP relaxation ap- 
proach (10) to BB methods is straightforward; the SDP 
relaxation approach gives a tight lower bound at each re- 
gion of the branching space (see [9]). However, this pa- 
per employs the local search algorithm presented in Al- 
gorithm 1 to reduce the relaxation gap, considering that  

any variations of the BB method are non-polynomial time 
algorithms due to the NP-hardness of BMI problems. 

2.3 R a n d o m  S e a r c h  A l g o r i t h m  
The algorithm proposed by Goemans and 

Williamson [19] to solve the Max-Cut problem in- 
cludes random searches. Other nontrivial examples of 
randomized algorithms based on the SDP relaxation 
include the application to the Graph Coloring problem 
[211. In both cases, the SDP relaxation is followed by 
an algorithm examining several random draws from 
the distribution defined by the solution of the relaxed 
problem. 

A simple random search approach, which is analogous 
to the one used by Frazzoli et al. [13], can be applied in 
Algorithm i along with the deterministic approach. After 
each step of solving the problem (7), random samples 
are drawn from the Gaussian distribution with the mean 
x (k) and covariance a (X (k) - x(k)z (~) T), where (x (k), 

X (k)) is the solution for the problem (7) at the k-th step, 
and a > 0 is a scalar constant. Notice that  if X -  xx T, 
then the distribution consists of a unique point, which 
is the optimal solution of the original BMI problem (1). 
If a solution of the original problem (1) is found by this 
search, then the algorithm is terminated. Otherwise, 
Step 2 is repeated. 

A major disadvantage of the formulation (3) is that  
it introduces a slack variable matrix X, which has 
t N ( N  + 1) parameters. When N is large, the increase of 2 
the number of variables may significantly slow down the 
algorithm. On the other hand, the direct applicability of 
random searches is a strong advantage of the proposed 
formulation, and so is the fact that  the SDP relaxation 
approach generally gives a very good lower bound for the 
original problem. Although the algorithm proposed in 
the previous section is a local search, the combination 
of the linearization-based descent method and random 
searches more likely finds the global solution in many 
practical applications. 

3 N u m e r i c a l  E x p e r i m e n t s  

In this section, four numerical experiments are pre- 
sented to show the search performance of the proposed al- 
gorithm for solving BMI problems. All experiments were 
carried out by using MATLAB on a PC with CPU Pen- 
t ium 450 MHz. The SDP solver engine SP [22] and its 
MATLAB interface LMITOOL [23] were used for SDP 
problems. 

3.1 A S imple  B M I  P r o b l e m  over  T w o  Var iab les  
The first problem is a very simple BMI problem over 

two variables, which was shown by Goh et al. [5] as an 
example of BMI problems that  had multiple local mini- 
mums. The problem is given as follows: 

min 7 ~= [xl,x~]T 

subject to F(x) - 7 I  -< 0 

Xl E [--0.5,  2 ] ,  X 2 E [--3, 7] (13)  

where F(z) = FO ~ - X l F  1 -~-x2F2-~-XlX2tP12 and F0,-~1, F2, 
and F12 are constant 3 × 3 symmetric matrices. See [5] 
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for their values. 
There are three local minimums in the domain, as can 

be observed from the contour plot of the greatest eigen- 
value of F(xl ,x2) (denoted by A{F(Xl,X2)}) shown in 
Figure 1. Therefore, conventional local search algorithms 
may not be able to find the global optimum, depending 
on the initial point. 

First, the SDP relaxation approach presented in Sec- 
tion 2.2 was applied to compute a lower bound for 
this problem. The relaxed problem (10) gave the op- 
timal objective value 7 (o) = -1.000 with the solution 
x (°) -- (1.00, 0.00) (shown in Figure 1 by O ¢/=0). The 
global optimum of the problem (13) is known to be x* = 
(1.0488, 1.4179) with the corresponding optimal objective 
value 7" - A{F(x*)} - -0.9565 [5]. Notice that  the SDP 
relaxation approach gave quite a tight lower bound. How- 
ever, its solution, x (°), achieved only A{F(x(°))} -- 5.919, 
which is not sufficiently close to the global optimum. 

Then, Algorithm 1 was applied starting from this ini- 
tial point, x (°), to reduce t r (X  (~)) - x  (k) 7x(k) to zero. 
Notice that  the proposed approach can be only applied 
to the feasibility problem in the form (1). For this prob- 
lem, the objective index, 7, in the problem (13) is fixed 
to -0.9565, which is equal to the global optimum. The 
objective is to find the global solution, x*, that  satisfies 
the constraint (13) with 7 fixed to this value. 

O ¢pl ~ O ~p3 in Figure 1 indicate the optimal solu- 
tions, x (k), at the k-th step of the rank minimization ap- 
proach (7). After three iterations, t r (X (k))-x (k) Tx(k) be- 
came approximately zero and x (3) achieved A{f(x(3))} - 
-0.9565. The total computational time for the initial 
search and three iterations was only 0.14 sac. 

Since the problem is small and thus each step of solving 
the problem (7) did not computationally cost much, a ran- 
dom search was not used. However, to show the effective- 
ness of the random search presented in Section 2.3, 50 ran- 
dom samples were drawn from the Gaussian distribution 
with the mean x (1) and the covariance X (1) - x ( 1 ) x  (1) T 
after the first iteration (see Figure 2). The best objec- 
tive value among 50 random samples was A{F(x)} - 
-0.9555 (the mean value, x0),  gave A{F(x(1))} - 2.113). 
Although it did not reach the global optimum, this result 
shows the effectiveness of random search to some extent. 
The computational time to compute X{F(x)} for 50 ran- 
dom samples was only 0.14 sac. 

Finally, it should be noted that  it is not necessarily 
because the initial point, x (°), was already close to the 
global optimum that  the sequence, {x(k)}, converged to 
the global optimum. Notice that  the objective function in 
the rank minimization approach (7) is not X{F(x)} and, 
therefore, the existence of multiple local minimums for 
A{_F(x)} does not necessarily mean that  the problem (7) 
also has multiple local minimums. For this particular 
problem, we verified that  Algorithm 1 found the global 
minimum by at most four iterations for any of 36 differ- 
ent initial points in the domain. 

3.2 R a n d o m l y  Generated  B M I  Problems  
The proposed algorithm was then tested to solve ran- 

domly generated BMI problems of the following form: 

min 7 such that  
x E R  N1 , yCl:tN2 

0 05 ~ 15 2 

F i g u r e  1: Contour plot of the greatest eigenvalue of F(Xl, x2) 
with the trajectory of the rank minimization ap- 
pro~h (© #0  ~ © #3) 

.1 

F i g u r e  2 : 5 0  random samples ("+") after one step of the 
rank minimization approach 

F0+ 
N 1  N 2  N 1  N 2  

E + E + E E - o(1 ) 
i = 1  j = l  i = 1  j = l  

where F0, Fi0, F0j, and Fij (i - 1,...,_N1; j - 
1, . . . ,  N2) E FRm×m are randomly generated constant 
symmetric matrices. Each entry of the coefficient ma- 
trices are randomly chosen from - 1 0  to 10. All vari- 
ables, z~ ( i -  1 , - . . ,N1)and  gj ( j -  1,---,N2), are re- 
stricted to [0.01, 100]. Similar tests were conducted by 
Tuan et al. [9]. Notice that  there is no quadratic term in 
the constraint (14), i.e. the above problem is strictly a 
BMI problem and less general than the problem (1). 

First, for each given problem, the global minimum 
was computed by using the BB method proposed by 
Tuan et al. [9]. A major advantage of this method is that  
it only performs the branching operations on either z- 
space of N1 dimension or y-space of N2 dimension that  
has less dimension than the other. By making use of the 
bilinear property of BMI problems, it reduces the dimen- 
sion of the branching space significantly than conventional 
general-purpose BB methods such as the one presented by 
Goh et al. [5]. The BB operations were iterated until the 
global minimum is found with 1~ tolerance. 

Then, Algorithm i was applied to solve the same prob- 
lem (14) with 3' fixed to the global optimum. This test 
was conducted for three different problem settings: 1) 
F0, Fij E ~3x3 and z, y E ~3 (100 problems), 2) F0, 

F~j E FR 6×6 and z, V E IRa (100 problems), and 3) F0, 
• ri~,ij E ~3×3 and x, y C N5 (35 problems). 

Table 1 shows the average number of iterations and 
computational time that  the BB method and Algorithm 1 
respectively had to perform to reach the global optimum 
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Table I: The average number of iterations and computational time for the BB method and the proposed 
algorithm to solve randomly generated BMI problems (*" does not include cases that failed) 

Tests BB Method 

Number of 
Size problems 

Fiy C IR sxs  s , x ,  y E  [R 
Fij E IR ~x~ s ,x ,  yCFR 
Fij E IR sxs  5 ,x ,  yEFR 

Number of 
successes 

35 

Average 
iterations 

3s( 00%) 

Average 
time (see) 

100 100(100%) 32.20 3.103 x 102 
100 100(100%) 100.85 1.138 x 103 

40.24 2.874 × 104 

Algorithm 1 
Number of Average Average 
successes iterations time (sec) 
84(84%) 14.95" 8.900* 
81(81%) 54.69* 80.97* 

30(85.7%) 8.100" 18.52" 

in total 235 problems. In total 40 problems (17.0% of 
all problems), Algorithm 1 failed to reach the global 
minimum. The approach proposed in this paper is a 
local search algorithm, and thus there is no guarantee 
that  it finds the global minimum. For practical control- 
related problems, however, it can be used at least to im- 
prove the control performance, as will be shown in the 
next experiment. Although the BB method proposed by 
Tuan et al. [9] is more efficient for BMI problems than 
conventional general-purpose BB methods, it still requires 
excessively heavy computation. Computational loads in- 
crease exponentially as the size of problem becomes larger. 

3.3 M i x e d  H2/H~  C o n t r o l l e r  D e s i g n  
The next example presents the application of the pro- 

posed algorithm to more practical control-related opti- 
mization problems. The problem is taken from [3]. 

Consider the following plant model: 

ic - Ax+Bu+BI@, zl - ClX-f DlU, z2 - C2x+D2u. 

The system dimensions are A E IR 3×3,  B ~ ~ 3 x l  , B 1 E 

FR a×2 and C1,C2 E FR ~×3. See [3] for their values. 
The objective is to design a state feedback control, 

u - Kx, such that  the closed-loop /-/2 norm from w to 
z2 is minimized, while the Hoo norm from w to Zl is kept 
less than the given level, "7 > 0. This problem can be 
formulated as a BMI problem as follows. 

min ~2 such that  

(A + BK)Tp1 -k- PI(A -f- BK)  PIB1 (C1 -}- D1K)T1 
BT P1 --"it 0 ] -z, O 

C1 -[- D1K 0 --~I 

[ (A + BK)TP2 + P2(A + BK)  P2BI ] 
B P2 - z -<o 

P2 (C2+D2K) T 
C2 + D2K Z >-- 0 

tr(Z) <,q2, P1 ;>-0, P 2 > - 0 .  (16) 

First, the above constraints were transformed into the 
form given in Eq. (1). Then, the initial point, x (°), was 
computed. For this problem, instead of using the rank 
relaxation approach given in Section 2.2, the following 
heuristic method was used to find a better initial point. 

Most of practical control-related optimization prob- 
lems can be solved by convex optimization if the design 
objective is relaxed. For this problem, if a common Lya- 
punov matrix for the //2 and Hoo problems is assumed 
(i.e. P1 - P2), then the problem can be equivalently 

transformed into an LMI problem (see e.g. [24]). This 
LMI approach gave the suboptimal solution that  achieved 
'r/2 = 2.545. We used this solution as the initial point for 
Algorithm 1. 

Recall that  the proposed approach can be applied only 
to the feasibility problem to find a solution set, (P1, P2, K,  
Z), with both ~1 and "7 fixed. Therefore, iterations over 
~/ are required to solve the minimization problem (16). 
After three iterations over r /from ~12 = 2.545 (totally 11 
iterations of solving the problem (7)), the solution set was 
found that  achieved ,q2 = 1.875. The total computational 
time was 228.23 sec. 

This solution may or may not be the global optimum. 
Although there is no guarantee that  the proposed ap- 
proach finds the global optimum, it can be at least used 
to improve the controller performance, as shown in this 
experiment. This "path-following" approach is commonly 
used with most of local search algorithms to solve control- 
related BMI problems [3]. 

3.4 S i m u l t a n e o u s  S t a t e - F e e d b a c k  S t a b i l i z a t i o n  
The next problem is also taken from [3]. Consider the 

following three linear time-invariant plants: 

" 2 - A k x + B k u ,  k - - 1 , 2 , 3  (17) 

The system dimensions are Ak E tR 3x3, B~ C ~R 3x2 (k = 
1,-.-,3). See [3] for their values. 

The goal is to find K = {Kij}i=l,2;j=l,2,3 E IR 2 x 3  

satisfying IKul _< ( i - -  1, 2; j - 1, 2, 3) such that  
the state feedback control, u = Kx,  stabilizes all three 
plants and that  the decay rate of each closed-loop system 
is maximized, where Kij,~a= (i = 1,2; j = 1, 2, 3)> 0 are 
constant. This problem can be written as the following 
BMI problem: 

max a such that  
P t c E R  3×3 ( k = 1 , 2 , 3 ) ,  K E R  2×3 

IKul _< 
(Ak + BkK)TPk + Pk(Ak + BkK) -< -2 Pk (lS) 

Pk >-0, k - -  1,2,3 

The similar "path-following" method as presented in 
the previous section was used to reduce a. Starting from 
a - - 2 . 0 5  (if K -  02×3, then the problem (18) has triv- 
ially a feasible solution for a >_ -2.05),  a is reduced at 
each step. The feasible solution set, (K, P~, P2, P3), is 
computed for each given a by using Algorithm 1. The op- 
timal solution set is used as an initial point for the next 
step of reducing c~. 
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T a b l e  2:  N u m b e r  of i t e ra t ions  t h a t  A lgo r i t hm 1 requires  to 
reach the  solut ion at  each s tep of reducing  a ( " ÷ "  
denotes  t h a t  the  solut ion was ob ta ined  by r a n d o m  
searches) 

I   01 0010:0 
iterations - 1+ 2+ 10 

0 0.10 0 . 3 0 , 0 . 5 0 . 0 . 6 0  0.70 0.75 
3+ 2+ 8+ I i 1 2 +  7+ 9+ 5 

0.80 0.85 0.90 0.95 1.00 1.05 total 
6 5 5+ 5+ 4 5+ 94 

Table 2 shows the number of iterations required at 
each step. For this problem, random searches proposed 
in Section 2.3 were performed after each iteration (100 
points were sampled after each iteration of Step 2 in Al- 
gorithm 1). "+" in Table 2 indicates that the solution 
was obtained by random searches. Unlike the previous 
problem, the proposed algorithm required too many it- 
erations (94 iterations) to reach the optimum, a - 1.05. 
This result is the same as the one obtained in [3]. 

4 Conc luding  Remarks  

In this paper, the rank minimization approach to solve 
BMI problems was presented. The proposed algorithm 
is based on the SDP relaxation approach to indefinite 
quadratic programming problems, which is analogous to 
the well-known relaxation method for a certain class of 
combinatorial problems. We employ the linearization- 
based local search algorithm to reduce the relaxation gap. 
A direct applicability of a random search is another strong 
advantage of the formulation presented in this paper. 

Considering the NP-hardness of BMI problems, the 
proposed algorithm is more practical than any existing 
global search approaches from the viewpoint of the com- 
putational efficiency. Four numerical experiments were 
presented to show the search performance of the proposed 
approach. Although it shows better performances for the 
problems presented in Section 3.1 and 3.3, it is not al- 
ways guaranteed to find the global minimum, as can be 
observed by the results in Section 3.2. And also, the re- 
sult in Section 3.4 was not satisfactory from the viewpoint 
of the convergence speed. Although its performance to 
find the global solution may not be satisfactory in some 
cases, it can be at least used to improve the controller 
performance by applying the "path-following" approach 
presented in Section 3.3 and 3.4. Finally, we note that 
the application of the proposed approach to BB methods 
for global search is straightforward. 
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