
Proceedings of the American Control Conference 
Chicago, Illinois • June 2000 

Taming Internal Dynamics by Mismatched 
Ha-Optimized State Observer 

and 

Soich i  I b a r a k i  a n d  M a s a y o s h i  T o m i z u k a  
D e p a r t m e n t  o f  M e c h a n i c a l  E n g i n e e r i n g ,  

U n i v e r s i t y  o f  C a l i f o r n i a  a t  Be rke l ey ,  Be rk e l ey ,  C A  9 4 7 2 0 - 1 7 4 0  
±baraki@mechat ro2. me. berkeley, edu tomizuka©me, berkeley, edu 

A b s t r a c t  

The feedback linearization control scheme is simple but  
quite effective for control of a single-input single-output 
(SISO) linear parameter-varying (LPV) plant. When the 
relative degree of the plant is less than its order, the feed- 
back linearization control scheme generates the internal 
dynamics, which may or may not be stable. This pa- 
per presents the design methodology of a state observ- 
er that not only provides the feedback linearization con- 
troller with good estimation of state variables of the plant, 
but also stabilizes the overall closed-loop system. We pro- 
pose to make the choice of system matrices of the state 
observer completely open in order to search for such an 
observer structure. Two application examples, including 
application to steering control for lateral motion of heavy- 
duty vehicles, are presented to illustrate how the proposed 
mismatched observer stabilizes the closed-loop system. 

1 I n t r o d u c t i o n  

Linear parameter-varying (LPV) systems are linear time- 
varying plants whose state-space matrices are fixed func- 
tions of a vector of known time-varying parameters,  O(t). 
They can be generally described by state-space equations 
of the following form: 

x(t) = A(O(t))x(t) + B(O(t))u(t) 
y(t) = C(O(t))x(t) + D(O(t))u(t) (1) 

The simplest gain-scheduled controller design methodolo- 
gy for this class of plants is linear interpolation of locally 
designed linear controllers. This approach is effective only 
under the assumption that  the scheduling parameter  O(t) 
changes slowly [1]. Researchers in the H ~  robust control 
field have developed the linearly-interpolated controller 
that  guarantees the stability and Hat norm performances 
of the closed-loop system for any t rajectory of the param- 
eter O(t) [2]. 
Those linear interpolation methods essentially "approxi- 
mate" a nonlinear plant by linear combination of a mul- 
tiple of local linear models. On the other hand, the feed- 
back linearization control (e.g. [5]) cancels all parameter- 
dependent terms in the closed-loop input-output  dynam- 
ics without using any linear approximation. It can be seen 
as a gain-scheduled state feedback controller in the sense 
that its state feedback gain matr ix is dependent on the 
scheduling parameters. 
When the relative degree of the plant is less than its order, 

the internal dynamics arises in the closed-loop system un- 
der the feedback linearization control, which may or may 
not be stable. This occurs when the zero dynamics of the 
system is unstable. This paper considers the stabilization 
of systems with unstable internal dynamics. Conventional 
methods for stabilization of the internal dynamics include 
employment of the "outer-loop" linear feedback controller 
(e.g. [3]). Employment  of the "outer-loop" controller 
makes, however, the entire controller structure much more 
complicated. Furthermore,  the closed-loop performance is 
likely dominated by the outer-loop controller, not by the 
inner-loop feedback linearization controller, which some- 
times obscures the role of the feedback linearization con- 
troller. 
If the feedback linearization control law includes the state 
feedback terms and the state vector is not directly avail- 
able, it is necessary to design a state observer. This pa- 
per presents the design methodology of a state observ- 
er that  not only provides the feedback linearization con- 
troller with good estimation of state variables of the plant. 
but also stabilizes the overall closed-loop system. When 
the classical Luenberger-type state observer is used, the 
internal dynamics resulting from the state feedback con- 
trol law is preserved in the observer state feedback system 
(the separation theorem for the closed-loop eigenvalues for 
observer state feedback control [4]). While it may be ar- 
gued that  the feedback linearization scheme should not 
be used if the zero dynamics is unstable, the use of mis- 
matched observer avoids to make it internal dynamics. 
We make the choice of state matrices of the observer com- 
pletely open such that  we can search for the structure 
that works on stabilization of the closed-loop system, as 
well as state estimation. In the Luenberger observer, on- 
ly the observer gain matr ix can be tuned to obtain the 
desired estimation error dynamics. The LMI-based H ~  
optimization algorithm can be applied to optimize all of 
system matrices of the state observer such that  it stabi- 
lizes the overall closed-loop system. By cooperating with 
the Hoc loop-shaping technique, the set of system matri- 
ces of the observer can be optimized such that  it outputs 
the estimates of the plant state variables with the desired 
estimation error dynamics. 
The remainder of this paper is organized as follows. In the 
next section, the feedback linearization control scheme is 
outlined. The proposed design methodology of the state 
observer is presented in Section 3. Section 4 presents two 
application examples. In the first example, the feedback 
linearization controller and the proposed mismatched ob- 
server were applied to a second order system to illus- 
t ra te  how the proposed mismatched observer stabilizes 
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the entire closed-loop system. The second example is the 
steering control problem for lateral control of heavy-duty 
vehicles (HDVs). Numerical simulations are conducted 
to show time-domain closed-loop performances of the de- 
signed controller and observer. 

2 Feedback Linear izat ion  Contro l  Scheme 

The feedback linearization control scheme determines the 
control input such that  it cancels all nonlinear terms in 
the closed-loop input-output  dynamics. See e.g. [5] for 
its general formulation. Here, as an example, consider a 
SISO second-order dynamic system of the following form: 

~(t) + A22(O)c~(t) + A21(O)q(t) = B(O)u(t) 
y(t) =C(O)q(t)  (2) 

where q(t) is a vector of n state variables, u(t) is a scalar 
control input, y(t) is a scalar output  and 0 is a vector of 
scheduling parameters. Suppose C(O)B(O) ~ 0 for any 0. 
Define the control law by 

1 
u(t) - C(O)B(O) {C(0)A21 (O)q(t) + C(0)A22 (0)q(t) 

- k l g ( t )  - k2y( t )  - k3 y(r)dr + v( t )}  (3) 

where kl, k2 and k3 are constant. The closed-loop input- 
output dynamics becomes 

/: ~(t) + kly(t)  + k2y(t) + k3 y(T)dT = v(t) (4) 

The integral term in the control law (3) is added to reject 
static disturbances. Notice that  Equation (4) is complete- 
ly independent of 0. 
Equation (2) can be rewritten in the standard state s- 
pace representation by defining the state vector x = 
[q(t) T 0(t)W] v. This can be combined with the control 
law (3) to describe the closed-loop dynamics. Notice that  
there are only three tunable controller parameters,  while 
the closed-loop system is (2n + 1)th order. Therefore, it 
is impossible to assign all closed-loop poles by the choice 
of the controller gains. The internal modes that  cannot 
be controlled by the feedback linearization controller are 
called internal dynamics, which may or may not be stable. 

3 M i s m a t c h e d  and Hoe-Opt imized  State  Observer 

One way to deal with unstable internal dynamics is to 
employ an "outer-loop" linear controller [3]. The entire 
closed-loop configuration is shown in Figure 1. A linear 
time-invariant (LTI) Hat controller is used as an outer- 
loop controller in order to stabilize the entire closed-loop 
system and enhance its robustness. 
In this paper, we propose to design the state observer such 
that it not only provides good estimates of the plant state 
variables, but also stabilizes the entire closed-loop sys- 
tem. The closed-loop configuration is shown in Figure 2. 
Advantages of the proposed approach are clear; first, the 
overall controller structure is much simpler. Furthermore, 
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Figure 1: Closed-loop configuration with the outer-loop con- 
troller 
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Figure 2: Closed-loop configuration with the proposed mis- 
matched observer 

the desired closed-loop input-output  dynamics is easier to 
obtain since, in the outer-loop controller approach, the 
overall input-output  dynamics is often determined by the 
outer-loop controller, not by the inner-loop feedback lin- 
earization controller. 

When the classical Luenberger state observer is used 
for estimating the state vector in the feedback lineariza- 
tion control law, the internal dynamics is completely p- 
reserved in the overall closed-loop system. The full-order 
Luenberger state observer is given by: 

~(t) = AS(t )  + Bu( t )  + L(y  - C~) (5) 

where ( A , B , C )  are system matrices of the plant, ~(t) 
is the estimated state vector, and L is the observer gain 
matrix. Consider the observer state feedback law: u(t) = 
F&(t) + v(t). The separation theorem for the closed-loop 
eigenvalues for observer state feedback control [4] states 
that  every eigenvalue of the overall closed-loop system is 
given by either that  of A + B F  or A -  LC. That  is, 
the eigenvalues of the combined system of the plant and 
controller are completely preserved in the overall closed- 
loop system. Notice that  A + B F  includes the modes in 
the internal dynamics. In other words, the Luenberger 
observer does not affect the internal dynamics. 
We propose to make the choice of system matrices of the 
observer completely open. Consider the state observer of 
the following structure: 

&o(t) = Aoxo(t) + Bolu( t )  + Bo2y(t) 
.~(t) = Coxo(t) + Dolu(t)  + Do2y(t) (6) 

The state estimate ~ is given as the output  vector of the 
observer, not as the state vector. The observer system 
matrices ( Ao, Bol , Bo2, Co, Do1, Do2) are not restricted to 
coincide with the system matrices of the plant. Even their 
sizes do not have to coincide with those of the plant system 
matrices. 
The set of those system matrices is required to satisfy 
the following design objectives: 1) the observer outputs 
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F i g u r e  3: H ~  synthesis of the state observer 

the estimated state variables of the plant with desired 
estimation error dynamics and 2) the overall closed-loop 
system is stabilized. They  can be written in the form of 
the H:~ norm performance objective as follows. 

I IWo(s)FL(PK(s) ,  Co(s))ll ~ < 1 (7) 

where Wo(s) is a performance filter transfer function ma- 
trix and FL (PK (s), Co (s)) denotes the closed-loop dynam- 
ics from v to e := x - ~ as shown in Figure 3. PK(s )  de- 
notes the combined system of the plant and the controller 
and Co(s) is the state observer dynamics. The standard 
H=~ controller synthesis algorithm [6] can be applied to 
search for such a state observer structure, since the choice 
of the observer system matrices is completely open. 
In the Luenberger observer, only the observer gain matrix 
L can be tuned to obtain the desired estimation error dy- 
namics. By making every system matr ix open for tuning, 
the observer structure that  stabilizes the entire closed- 
loop system could be found. Notice that  this observer is 
inherently mismatched (i.e. the system matrices of the 
observer do not match those of the plant) and thus the 
separation theorem for the closed-loop eigenvalues does 
not apply. In other words, the closed-loop input-output  
dynamics is affected by the observer dynamics. By appro- 
priately choosing the performance filter Wo(s)  in Equa- 
tion (7) and designing the estimation error dynamics of 
the observer properly, however, the effect of the observer 
dynamics on the closed-loop input-output  dynamics may 
be localized to unstable internal dynamics. Notice that  
if the observer can estimate the plant state variables per- 
fectly, the closed-loop input-output  dynamics would be 
given by Equation (4) and the unstable internal dynam- 
ics will be retained. 
Finally, note that the observer design methodology pre- 
sented in this section assumes that  all scheduling pa- 
rameters are fixed and thus the plant can be regarded 
as an LTI model. When the scheduling parameters are 
varying, although the closed-loop input-output  dynamics 
is still time-invariant due to cancellation of parameter- 
dependent terms by the feedback linearization controller, 
the internal dynamics becomes time-varying. If variations 
of scheduling parameters cause serious performance dete- 
rioration, more advanced design theories could be applied 
to observer design, such as the #-synthesis or the gain- 
scheduled H~o controller design methodology [2]. 

4 Application Examples  

4.1 A p p l i c a t i o n  to  a S e c o n d - o r d e r  L T I  S y s t e m  
Consider a second-order system of the following form: 

.~l(t) = x2(t)  

x2(t) : a l x l ( t )  + a2x2(t)  + u(t)  
u ( t )  : x l  ( t )  - x 2 ( t )  ( s )  

where u(t)  is a scalar control input and y( t )  is a scalar 
system output .  For simplicity, let al and a2 be constant 
(al = a2 = 1). The feedback linearization control law is 
given by 

u(t)  : - a l x l  (t) - (1 + a2)x2(t)  - ky( t )  + v(t)  (9) 

where k is constant and v( t )  is a new input. Then, the 
closed-loop input-output  dynamics become 

y(t)  + ky( t )  = v(t)  (10) 

The overall closed-loop dynamics is given by combination 
of Equation (8) and (9): 

d-t Lx2(t)J = 1 - k  Lx2(t) + v(t)  (11) 

The closed-loop poles are at s = 1 , - k .  The pole at 
s = - k  dominates the closed-loop input-output  dynam- 
ics. The unstable pole at s = 1 is unobservable from the 
output  and defines the internal dynamics. Note that it 
cannot be altered by the controller gain. Here, k is set to 
0.1. 
Notice that  the control law (9) assumes that  both state 
variables are available. The Luenberger observer is for- 
mulated by 

<t r ,(t)l o 

where e(t) := y( t )  - (71 (t) -:~2(t)). Figure 4 (right) shows 
the closed-loop pole locations (ll = 10 and 12 = 5). Com- 
pared with the closed-loop poles of Equation (11) shown 
in the same figure, it can be seen that  the Luenberger 
observer simply adds two new poles. The pole at s = 1 
is not affected at all by the Luenberger observer and the 
closed-loop system is unstable. 
Next, the proposed mismatched observer is designed for 
this plant. The  design objective is given by 

Ilwo(8)T:k:_ (s)ll  < 1 (la) 

5xl°-4ts+l°) is the performance filter. where Wo(s)  = s+5×10_4 
TvC~x_:~(s) denotes the closed-loop transfer function ma- 
trix from v(t)  to x( t )  - ~(t) .  Figure 4 (right) shows the 
closed-loop poles with the designed mismatched observ- 
er. Notice that  the unstable internal dynamics has been 
replaced by a dynamic mode governed by the new sta- 
ble pole near s = - 2 .  The input-output  dynamics pole 
at s = - k  = -0 .1  is still preserved. Two extra poles, 
which may be interpreted as observer poles*, are intro- 
duced near the input-output  dynamics pole. These two 
modes associated with the observer and the mode gov- 
erned by the stable pole near s = - 2  are significantly 
faster than the original input-output  dynamics due to the 
pole at s = - k  = -0 .1 .  It makes sense to replace the zero 
dynamics, which does not show up in the input-output 
response, by dynamics much faster than the input-output 
dynamics. 

Figure 5(a) and (b) show the output  response (y) and 

*Since the separat ion principle does not apply, it is not strictly 
correct to call them observer poles. 
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Figure 4: Closed-loop pole locations with direct state feed- 
back (+), the Luenberger observer (o) (left) and 
the proposed mismatched observer (*) (right) 
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Figure 5: (a) Step response of the output y (left) (b) Step 
responses of internal modes Xl and x2 and their 
estimates xl and &2 (right) 

internal mode responses (xl and x2) to a unit step input 
for the designed mismatched observer. The break line in 
(a) shows the ideal response (Equation (10)). Notice tha t  
this plant is a reverse reaction plant. Yet, the optimized 
observer feedback system approximates  the ideal response 
well although it cannot remove the reverse reaction com- 
pletely. 

4.2 Appl i ca t ion  to Steer ing  Contro l  of  Lateral  
M o t i o n  H D V s  

4.2.1 M o d e l  Descr ip t ion  
Under a couple of mild simplifying assumptions,  the lin- 
earized model of lateral motion of a single-unit HDV 
(tractor-semitrailer type) can be given as follows [8]. 

+ A220 + A21q = B 1 5  -.b B2~d -F Bagd (14) 

where A21 = M - 1 K ,  A2~ = M - 1 D ,  B1 = M - 1 F ,  
B~ = M -1E2 , B3 = M - 1 E 2  . q = [ y~ e~ e/] w is the gener- 
alized coordinate vector: y~ is the lateral displacement of 
the t ractor ' s  center of gravity, er is the yaw angle of the 
t ractor  relative to the road, e I is the articulation angle 
between the t ractor  and semi-tractor.  6 is the steering 
angle, and it is the control input. ~d and gd are the yaw 
rate and yaw acceleration of the road frame, respectively. 
They are regarded as disturbances. See [8] for detailed 
descriptions of the inertial matr ix  M, the damping ma- 
trix D, the stiffness matr ix  K ,  coefficient matrices F,  E1 
and E2. Note that  M,  D, F and K are functions of v 
(longitudinal velocity of the vehicle), m2 (cargo loads in 
the trailer), and # (road adhesion coefficient). Variations 
of these parameters  are the main causes of model uncer- 
tainties. The input signal to the controller is defined as: 

Ys = Y~ + d~e~ =: Clq  (15) 

where C1 = [ l d s 0 ]  and ds is a constant called the 
"look-ahead" distance. 
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Figure  6 :  F r e q u e n c y  r e s p o n s e s  f r o m  d i s t u r b a n c e  i n p u t  e'd to  
e s t i m a t i o n  e r ro r s  e(t)  :=  x ( t )  -- &(t) (solid l ines) 
and the inverse of the performance filter l,I~(s) 
(dashed line) 

4.2.2 Control ler  and Observer  Des ign  
The control objective is to keep the lateral tracking error 
at the t rac tor  center of gravity and the off-tracking error 
at the rear of the trailer to be small for lane-following ma- 
neuver. The  objective of applying the feedback lineariza- 
tion controller to lateral control of the HDV model is to 
cancel all terms tha t  are dependent  on the longitudinal ve- 
locity, v, such tha t  the desired disturbance-displacements 
dynamics can be obtained for any velocity. 
First note tha t  only A22 is dependent  on v in (14). The 
feedback linearization controller (3) is designed for this 
plant. The controller gains are set to: kl = 4.3294, 
k2 = 3.2391 and k3 = 1.7443. These values are designed 
by using the Hoc optimizat ion algorithm presented in [7] 
such that  the overall closed-loop system has the desired 
robustness against model uncertainties. The robustness 
of the entire closed-loop system is more likely determined 
by the choice of the controller gains of the feedback lin- 
earization controller, not the choice of the state observer. 
The s tate  observer is designed to meet  the internal sta- 
bility requirement and the H ~  performance requirement 
(7) with the following performance filter: 

s + 2  
Wo(s) = (16) 

O.05(s + 0.002) 

The designed observer Co(s) is eighth order and achieves 
the closed-loop H¢¢ gain of 1.162. Note that  the order 
of the plant is sixth. The  s tandard  H ~  control synthesis 
algorithm gives the controller of the same order as the 
combined system of the plant,  the controller, and the per- 
formance filter. Figure 6 shows frequency responses of 
state estimation error dynamics,  FL ( PK ( s ), Co  ( s ) ) . The 
dashed line represents the frequency response of the in- 
verse of Wo(s) .  

4.3.3 S imula t ion  R esu l t s  
Time-domain simulations are conducted to show the 
closed-loop performance of the designed feedback lin- 
earization controller and Ho~ observer. The road cur- 
vature scenario for the simulations is designed based on 
the test t rack at Crows Landing Test Site [8]. Figure 
7 shows the simulation results for the nominal condition 
and two per turbed conditions. Figure 8 shows the esti- 
mat ion error for each s tate  variable. The maneuver is 
accomplished with an overshoot from the lane centerline 
less than 40 cm in all the cases. It  can be observed that  
the designed feedback linearization controller gives more 
stable responses in a wider range of longitudinal veloci- 
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p = 1.0, m2 = 24000 kg) (dotted:v = 5 m/s, 
p = 0.6, m2 = 5000 kg) 

,., ol--  ,t,.__ I 

o l r  = e l  [ml o t l a x e  I l J  

i 

,r 

8: State est imation errors corresponding to (a) 

ties than the t ime-invariant Hoo controllers presented in 
[8]. Although the robustness is not the main scope of this 
paper,  the designed controller and observer gives quite s- 
mooth responses even when paramete r  per turbat ions  on 
m2 and # are introduced. 
Figure 9 and 10 show the comparison between the direct 
state feedback case (i.e. all s ta te  variables of the plant 
are assumed available) and the case where the designed 
mismatched observer is used. Figure 9 shows the state 
responses under the per turbed condition and Figure 10 
shows the closed-loop pole locations of each system. It  
can be seen that  the closed-loop system with direct s tate 
feedback has the mode governed by the poles almost on 
the imaginary axis, which makes the output  responses in- 
tolerably oscillating. On the other hand, the mismatched 
observer replaces those undamped  modes by the modes 
governed by the poles near (-0.1=i:0.5j) and thus it shows 
much more stable responses. 

5 C o n c l u s i o n  

The major  problem of the feedback linearization control 
scheme is the stability of the internal dynamics,  which 
arises when the relative degree of the plant is less than  its 
order. This paper  presents the design methodology of a 
state observer that  not only provides the controller with 
good estimation of the plant states, but also stabilizes 
the entire closed-loop system. By applying the proposed 
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Figure 9: The closed-loop responses of y~ (t) with direct state 
feedback(dashed) and the designed mismatched 
observer (solid) under the perturbed condition 
(v = 5 m/s, # = 0.6, rn2 = 5000 kg) 
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Figure 1 0 :  Closed- loop pole  loca t ions  of the  sys t em wi th  
d i rec t  s t a t e  feedback  (o) a n d  t he  designed mis- 
m a t c h e d  observer  ( , )  u n d e r  the  same  condi t ions  
as in (a) 

mismatched observer, the internal dynamics becomes ob- 
servable from the output  and affects the input-output  dy- 
namics since the separat ion principle no longer applies. 
By replacing the unstable internal dynamics by signifi- 
cantly faster modes, however, the effect of the new poles 
on the closed-loop input-output  dynamics can be mini- 
mized. Two application examples were presented in this 
paper.  In the second example,  the proposed approach is 
applied to the steering control problem for lateral motion 
of heavy-duty vehicles. It  was verified by numerical simu- 
lations tha t  the proposed controller and observer structure 
showed favorable responses in a wide range of longitudinal 
velocities of the vehicle. 
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